某種商品進價12元,若定價20元,賣100件.發(fā)現(xiàn)定價每多1元,少賣5件,問定價多少時,利潤最大.
考點:二次函數(shù)的性質
專題:函數(shù)的性質及應用
分析:利用每個商品的利潤×賣出數(shù)量=總利潤寫出函數(shù)關系式;利用配方法求得函數(shù)解析式的最大值,得出答案.
解答: 解:設在20元的基礎上漲x元,則少賣5x件,
由題意得:y利潤=(20+x-12)(100-5x)=-5(x-6)2+980,
∴當x=6時,y最大,
∴定價為20+6=26元時,利潤最大.
點評:此題主要考查了二次函數(shù)在實際問題中的運用,根據(jù)利潤=(售價-進價)×賣的件數(shù),列出函數(shù)解析式,求最值是解題關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知全集U=R,集合A={x|x2≥3},B={x|1<x<3},則A∪(∁UB)=(  )
A、R
B、{x|x≤-
3
或x
3
}
C、{x|x≤1或x≥
3
}
D、{x|x≤-
3
或x≥3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題P:“若x2=1,則x=1”,在它的逆命題、否命題、逆否命題三個命題中,真命題的個數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinωx+cos(ωx+
π
6
),其中x∈R,ω為正常數(shù).
(1)當ω=2時,求f(
π
3
)的值;
(2)記f(x)的最小正周期為T,若f(
π
3
)=1,求T的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=sin2(2x-
π
4
)-2t•sin(2x-
π
4
)+t2-6t+1(x∈[
π
24
,
π
2
])其最小值為g(t).
(1)求g(t)的表達式;
(2)當-
1
2
≤t≤1時,要使關于t的方程g(t)=kt有一個實根,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(2-
5
x)3=a0+a1x+a2x2+a3x3,求(a0+a22-(a1+a32的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且Sn=
2(n=1)
2an(n≥2)

(Ⅰ)求an;
(Ⅱ)設bn=
Sn+1
(Sn+lognSn)(Sn+1+log2Sn+1)
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)t,若存在t∈[
1
2
,3]使得不等式|t-1|-|2t-5|≥|x-1|+|x-2|成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某算法的偽代碼如圖所示,則可算得f(-1)+f(e)的值為
 

查看答案和解析>>

同步練習冊答案