【題目】已知橢圓的離心率為,其右頂點為,下頂點為,定點的面積為,過點作與軸不重合的直線交橢圓兩點,直線分別與軸交于兩點.

1)求橢圓的方程;

2)試探究的橫坐標的乘積是否為定值,若是,請求出該定值;若不是,請說明理由.

【答案】12)是定值,

【解析】

1)由三角形的面積、離心率列出方程組求解a、b,即可寫出橢圓方程;(2)設出直線的方程與點的坐標,求出直線BPBQ的方程進而求出點M、N的橫坐標,兩橫坐標相乘并化簡為關于、的表達式,直線的方程與橢圓方程聯(lián)立并利用韋達定理求出,代入橫坐標的乘積化簡即可證明.

1)由已知,的坐標分別是由于的面積為,

①,又由,化簡得②,

①②兩式聯(lián)立解得:(舍去),

橢圓方程為;

2)設直線的方程為的坐標分別為

則直線的方程為,令,得點的橫坐標,

直線的方程為,令,得點的橫坐標,

把直線代入橢圓

由韋達定理得,

,是定值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某蛋糕店制作并銷售一款蛋糕,制作一個蛋糕成本4元,且以9元的價格出售,若當天賣不完,剩下的則無償捐獻給飼料加工廠.根據(jù)以往100天的資料統(tǒng)計,得到如表需求量表:

需求量/

[100,110

[110,120

[120130

[130,140

[140150]

天數(shù)

15

25

30

20

10

該蛋糕店一天制作了這款蛋糕XXN)個,以x(單位:個,100≤x≤150xN)表示當天的市場需求量,T(單位:元)表示當天出售這款蛋糕獲得的利潤.

1)當x135時,若X130時獲得的利潤為T1,X140時獲得的利潤為T2,試比較T1T2的大;

2)當X130時,根據(jù)上表,從利潤T不少于560元的天數(shù)中,按需求量分層抽樣抽取6天.

i)求此時利潤T關于市場需求量x的函數(shù)解析式,并求這6天中利潤為650元的天數(shù);

ii)再從這6天中抽取3天做進一步分析,設這3天中利潤為650元的天數(shù)為ξ,求隨機變量ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下圖是某市31日至14日的空氣質(zhì)量指數(shù)趨勢圖,空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染,某人隨機選擇31日至313日中的某一天到達該市,并停留2.

(Ⅰ)求此人到達當日空氣重度污染的概率;

(Ⅱ)X是此人停留期間空氣質(zhì)量優(yōu)良的天數(shù),X的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小明在某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎勵1元;乙方案:底薪140元,每日前54單沒有獎勵,超過54單的部分每單獎勵20元.

(1)請分別求出甲、乙兩種薪酬方案中日薪y(單位:元)與送貨單數(shù)n的函數(shù)關系式;

(2)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)滿足以下條件:在這100天中的派送量指標滿足如圖所示的直方圖,其中當某天的派送量指標在時,日平均派送量為單.若將頻率視為概率,回答下列問題:

①估計這100天中的派送量指標的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)

根據(jù)以上數(shù)據(jù),設每名派送員的日薪為(單位:元),試分別求出甲、乙兩種方案的日薪的分布列及數(shù)學期望. 請利用數(shù)學期望幫助小明分析他選擇哪種薪酬方案比較合適?并說明你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直四棱柱被平面所截得到如圖所示的五面體,,

1)求證:∥平面;

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從秦朝統(tǒng)一全國幣制到清朝末年,圓形方孔銅錢(簡稱“孔方兄”)是我國使用時間長達兩千多年的貨幣.如圖1,這是一枚清朝同治年間的銅錢,其邊框是由大小不等的兩同心圓圍成的,內(nèi)嵌正方形孔的中心與同心圓圓心重合,正方形外部,圓框內(nèi)部刻有四個字“同治重寶”.某模具廠計劃仿制這樣的銅錢作為紀念品,其小圓內(nèi)部圖紙設計如圖2所示,小圓直徑1厘米,內(nèi)嵌一個大正方形孔,四周是四個全等的小正方形(邊長比孔的邊長。,每個正方形有兩個頂點在圓周上,另兩個頂點在孔邊上,四個小正方形內(nèi)用于刻銅錢上的字.設,五個正方形的面積和為S

1)求面積S關于的函數(shù)表達式,并求定義域;

2)求面積S最小值及此時的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中

(Ⅰ)若,討論的單調(diào)性;

(Ⅱ)若,當時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市《城市總體規(guī)劃(年)》提出到2035年實現(xiàn)“15分鐘社區(qū)生活圈全覆蓋的目標,從教育與文化、醫(yī)療與養(yǎng)老、交通與購物、休閑與健身4個方面構建“15分鐘社區(qū)生活圈指標體系,并依據(jù)“15分鐘社區(qū)生活圈指數(shù)高低將小區(qū)劃分為:優(yōu)質(zhì)小區(qū)(指數(shù)為、良好小區(qū)(指數(shù)為0.4-0.63、中等小區(qū)(指數(shù)為0.2~0.4)以及待改進小區(qū)(指數(shù)為0-0.2)4個等級.下面是三個小區(qū)4個方面指標值的調(diào)查數(shù)據(jù):

注:每個小區(qū)”15分鐘社區(qū)生活圈指數(shù)其中、、為該小區(qū)四個方面的權重,為該小區(qū)四個方面的指標值(小區(qū)每一個方面的指標值為之間的一個數(shù)值)

現(xiàn)有100個小區(qū)的“15分鐘社區(qū)生活圈指數(shù)數(shù)據(jù),整理得到如下頻數(shù)分布表:

1)分別判斷A、B、C三個小區(qū)是否是優(yōu)質(zhì)小區(qū),并說明理由;

2)對這100個小區(qū)按照優(yōu)質(zhì)小區(qū)、良好小區(qū)、中等小區(qū)和待改進小區(qū)進行分層抽樣,抽取10個小區(qū)進行調(diào)查,若在抽取的10個小區(qū)中再隨機地選取2個小區(qū)做深入調(diào)查,記這2個小區(qū)中為優(yōu)質(zhì)小區(qū)的個數(shù)為ζ,求ζ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】萬眾矚目的第14屆全國冬季運動運會(簡稱“十四冬”)于2020216日在呼倫貝爾市盛大開幕,期間正值我市學校放寒假,寒假結(jié)束后,某校工會對全校100名教職工在“十四冬”期間每天收看比賽轉(zhuǎn)播的時間作了一次調(diào)查,得到如圖頻數(shù)分布直方圖:

1)若將每天收看比賽轉(zhuǎn)播時間不低于3小時的教職工定義為“冰雪迷”,否則定義為“非冰雪迷”,請根據(jù)頻率分布直方圖補全列聯(lián)表;并判斷能否有的把握認為該校教職工是否為“冰雪迷”與“性別”有關;

2)在全!氨┟浴敝邪葱詣e分層抽樣抽取6名,再從這6名“冰雪迷”中選取2名作冰雪運動知識講座.記其中女職工的人數(shù)為,求的分布列與數(shù)學期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,

查看答案和解析>>

同步練習冊答案