考點:函數(shù)的圖象
專題:函數(shù)的性質及應用,導數(shù)的概念及應用
分析:由已知中函數(shù)f(x)=ax3+bx2+cx+d的圖象,根據(jù)其與y軸交點的位置,可以判斷d的符號,進而根據(jù)其單調性和極值點的位置,可以判斷出其中導函數(shù)圖象的開口方向(可判斷a的符號)及對應函數(shù)兩個根的情況,結合韋達定理,可分析出b,c的符號,進而得到答案.
解答:
解:∵函數(shù)f(x)=ax3+bx2+cx+d的圖象與y軸交點的縱坐標為負,故d<0;
∵f(x)=ax3+bx2+cx+d的圖象有兩個遞減區(qū)間,有兩個遞增區(qū)間,
∴f′(x)=3ax2+2bx+c的圖象開口方向朝下,且于x軸有兩個交點,故a<0,
又∵f(x)=ax3+bx2+cx+d的圖象的極小值點和極大值點在y軸兩側,且極小點離y軸近,
∴f′(x)=3ax2+2bx+c=0的兩根x1,x2滿足,
x1+x2>0,則b>0,x1•x2<0,則c>0,
綜上a<0,b>0,c>0,d<0,
故選A
點評:本題考查的知識點是函數(shù)的圖象與圖象變化,其中根據(jù)圖象的形狀分析其導函數(shù)的性質是解答本題的關鍵,同時由于本題涉及到導數(shù),二次函數(shù)的圖象和性質,函數(shù)的單調性,函數(shù)取極值的條件等諸多難點,故難度比較大.