若函數(shù)f(x)=ax3+bx2+cx+d的圖象如圖所示,則一定有(  )
A、a<0  b>0  c>0  d<0
B、a<0  b<0  c>0  d<0
C、a<0  b>0  c<0  d<0
D、a<0  b<0  c<0  d<0
考點:函數(shù)的圖象
專題:函數(shù)的性質及應用,導數(shù)的概念及應用
分析:由已知中函數(shù)f(x)=ax3+bx2+cx+d的圖象,根據(jù)其與y軸交點的位置,可以判斷d的符號,進而根據(jù)其單調性和極值點的位置,可以判斷出其中導函數(shù)圖象的開口方向(可判斷a的符號)及對應函數(shù)兩個根的情況,結合韋達定理,可分析出b,c的符號,進而得到答案.
解答: 解:∵函數(shù)f(x)=ax3+bx2+cx+d的圖象與y軸交點的縱坐標為負,故d<0;
∵f(x)=ax3+bx2+cx+d的圖象有兩個遞減區(qū)間,有兩個遞增區(qū)間,
∴f′(x)=3ax2+2bx+c的圖象開口方向朝下,且于x軸有兩個交點,故a<0,
又∵f(x)=ax3+bx2+cx+d的圖象的極小值點和極大值點在y軸兩側,且極小點離y軸近,
∴f′(x)=3ax2+2bx+c=0的兩根x1,x2滿足,
x1+x2>0,則b>0,x1•x2<0,則c>0,
綜上a<0,b>0,c>0,d<0,
故選A
點評:本題考查的知識點是函數(shù)的圖象與圖象變化,其中根據(jù)圖象的形狀分析其導函數(shù)的性質是解答本題的關鍵,同時由于本題涉及到導數(shù),二次函數(shù)的圖象和性質,函數(shù)的單調性,函數(shù)取極值的條件等諸多難點,故難度比較大.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

甲、乙兩人一起去游?谲囌梗麄兗s定各自獨立的從1到6號展臺中,任選4個進行觀看,每個展臺參觀10分鐘,則最后10分鐘他們同在一個展臺的概率是(  )
A、
1
36
B、
1
9
C、
5
36
D、
1
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓
x2
4
+
y2
3
=1的焦點坐標為( 。
A、(±1,0)
B、(±
2
,0)
C、(±2,0)
D、(0,±1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

運行以下程序:

得到的結果是( 。
A、j-1B、jC、10D、9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1=2an-3,則數(shù)列{an}的通項公式為(  )
A、an=
1,n=1
3-2n-1,n>1
B、an=3+(-2)n
C、an=3-2n
D、an=-3+2n+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有六種不同顏色,給如圖的六個區(qū)域涂色,要求相鄰區(qū)域不同色,不同的涂色方法共有( 。
A、4320B、2880
C、1440D、720

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若變量x,y滿足約束條件
x+y≤8
2y-x≤4
x≥0
y≥0
,則z=5y-x的最大值是( 。
A、16B、30C、24D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

方程lgx+x=0根的個數(shù)為(  )
A、無窮多B、3C、1D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某人從甲地到乙地有A,B,C三條路可走,走A路的概率為0.2,不走C路的概率為0.8,則該人走B路的概率是( 。
A、0.6B、0.3
C、0.1D、0.5

查看答案和解析>>

同步練習冊答案