“m=1”是“復(fù)數(shù)z=(1+mi)(1+i)(m∈R,i為虛數(shù)單位)為純虛數(shù)”的(  )
A、充分非必要條件
B、必要非充分條件
C、充要條件
D、既不充分又不必要條件
考點:必要條件、充分條件與充要條件的判斷
專題:數(shù)系的擴充和復(fù)數(shù)
分析:根據(jù)充分條件和必要條件的定義,結(jié)合復(fù)數(shù)的有關(guān)概念即可得到結(jié)論.
解答: 解:z=(1+mi)(1+i)=(1-m)+(m+1)i,
若復(fù)數(shù)z=(1+mi)(1+i)(m∈R,i為虛數(shù)單位)為純虛數(shù),
1-m=0
m+1≠0
,即
m=1
m≠-1
,解得m=1,
∴“m=1”是“復(fù)數(shù)z=(1+mi)(1+i)(m∈R,i為虛數(shù)單位)為純虛數(shù)”的充要條件.
故選:C.
點評:本題主要充分條件和必要條件的判斷,利用復(fù)數(shù)的有關(guān)概念是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)(2x+1)5+(x-2)4=a0+a1x+a2x2+a3x3+a4x4+a5x5,則a2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點為F,右頂點為A,其長軸長是焦距的4倍,且拋物線y2=6x的焦點平分線段AF,則橢圓C的方程為( 。
A、
x2
4
+
y2
3
=1
B、
x2
4
+
4y2
15
=1
C、
x2
16
+
y2
15
=1
D、
x2
16
+
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=-i(i+1)(i為虛數(shù)單位)的共軛復(fù)數(shù)是( 。
A、1+iB、1-i
C、-1+iD、-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={x||x|>2},N={x|x>1},則M∩N=( 。
A、{x|x<-2或x>2}
B、{x|x>2}
C、{x|x>1}
D、{x|x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

程序框圖如圖所示,輸出S的值是( 。
A、7B、11C、12D、25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的頂點在坐標(biāo)原點O,焦點F在x軸上,拋物線上的點A到F的距離為2,且A的橫坐標(biāo)為l.直線l:y=kx+b與拋物線交于B,C兩點.
(1)求拋物線的方程;
(2)當(dāng)直線OB,OC的傾斜角之和為45°時,證明直線l過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了監(jiān)測某海域的船舶航行情況,海事部門在該海域設(shè)立了如圖所示東西走向,相距20海里的A,B兩個觀測站,觀測范圍是到A,B兩觀測站距離之和不超過40海里的區(qū)域.
(Ⅰ)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求觀測區(qū)域邊界曲線的方程;
(Ⅱ)某日上午7時,觀測站B發(fā)現(xiàn)在其正東10海里的C處,有一艘輪船正以每小時8海里的速度向北偏西45°方向航行,問該輪船大約在什么時間離開觀測區(qū)域?(參考數(shù)據(jù):
2
≈1.4,
3
≈1.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的值域:
(1)y=
1-2x
1+3x
;
(2)y=
1-2
x
1+3
x

查看答案和解析>>

同步練習(xí)冊答案