【題目】給出下列結(jié)論:
①下面程序框圖的算法思路源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入的,分別為8,12,則輸出的;
②若用樣本數(shù)據(jù)0,-1,2,3來估計總體的標(biāo)準(zhǔn)差,則總體的標(biāo)準(zhǔn)差估計值為;
③命題:“若,則”的否命題是“若,則”;
④已知正數(shù),滿足,則的最大值是;
⑤已知函數(shù)滿足,,且當(dāng)時,.則在區(qū)間為增函數(shù).
其中結(jié)論正確的序號是______.
【答案】①②⑤
【解析】
①模擬程序運行即可判斷;
②根據(jù)公式依次求出平均數(shù)、方程、標(biāo)準(zhǔn)差,由此即可判斷;
③“”的否定為“”,由此即可判斷;
④由基本不等式化簡得,則,解出不等式即可判斷;
⑤由題意知是奇函數(shù),且關(guān)于對稱,則是周期的函數(shù),從而得到在與兩段的圖象相同,由此即可判斷.
解:①模擬程序運行,輸入的,,滿足,但不滿足,故對重新賦值為;滿足,滿足,故對重新賦值為;不滿足,則輸出的,故①正確;
②樣本的平均數(shù),方差,故總體總體的標(biāo)準(zhǔn)差估計值為,故②正確;
③命題“若,則”的否命題是“若,則”,故③錯誤;
④已知正數(shù),,由基本不等式化簡得,所以,解得,當(dāng)且僅當(dāng)時等號成立,故④錯誤;
⑤由題意知是奇函數(shù),且關(guān)于對稱,則函數(shù)是最小正周期的函數(shù),又當(dāng)時,,則當(dāng)時,單調(diào)遞增,由周期性知,在與兩段的圖象相同,故⑤正確;
故答案為:①②⑤.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班級共有50名同學(xué)(男女各占一半),為弘揚傳統(tǒng)文化,班委組織了“古詩詞男女對抗賽”,將同學(xué)隨機分成25組,每組男女同學(xué)各一名,每名同學(xué)均回答同樣的五個不同問題,答對一題得一分,答錯或不答得零分,總分5分為滿分.最后25組同學(xué)得分如下表:
組別號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
男同學(xué)得分 | 5 | 4 | 5 | 5 | 4 | 5 | 5 | 4 | 4 | 4 | 5 | 5 | 4 |
女同學(xué)得分 | 4 | 3 | 4 | 5 | 5 | 5 | 4 | 5 | 5 | 5 | 5 | 3 | 5 |
分差 | 1 | 1 | 1 | 0 | -1 | 0 | 1 | -1 | -1 | -1 | 0 | 2 | -1 |
組別號 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | |
男同學(xué)得分 | 4 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 4 | 3 | 3 | |
女同學(xué)得分 | 5 | 3 | 4 | 5 | 4 | 3 | 5 | 5 | 3 | 4 | 5 | 5 | |
分差 | -1 | 0 | 0 | -1 | 0 | 1 | 0 | 0 | 2 | 0 | -2 | -2 |
(I)完成列聯(lián)表,并判斷是否有90%的把握認(rèn)為“該次對抗賽是否得滿分”與“同學(xué)性別”有關(guān);
(Ⅱ)某課題研究小組假設(shè)各組男女同學(xué)分差服從正態(tài)分布,首先根據(jù)前20組男女同學(xué)的分差確定和,然后根據(jù)后面5組同學(xué)的分差來檢驗?zāi)P,檢驗方法是:記后面5組男女同學(xué)分差與的差的絕對值分別為,若出現(xiàn)下列兩種情況之一,則不接受該模型,否則接受該模型.①存在;②記滿足的i的個數(shù)為k,在服從正態(tài)分布的總體(個體數(shù)無窮大)中任意取5個個體,其中落在區(qū)間內(nèi)的個體數(shù)大于或等于k的概率為P,.
試問該課題研究小組是否會接受該模型.
0.10 | 0.05 | 0.010 | |
2.706 | 3.841 | 6.635 |
參考公式和數(shù)據(jù):
,;若,有,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】很多關(guān)于整數(shù)規(guī)律的猜想都通俗易懂,吸引了大量的數(shù)學(xué)家和數(shù)學(xué)愛好者,有些猜想已經(jīng)被數(shù)學(xué)家證明,如“費馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內(nèi)容是:對于每一個正整數(shù),如果它是奇數(shù),則將它乘以再加1;如果它是偶數(shù),則將它除以;如此循環(huán),最終都能夠得到.下圖為研究“角谷猜想”的一個程序框圖.若輸入的值為,則輸出i的值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義在上的偶函數(shù)滿足,且在區(qū)間上是減函數(shù),,現(xiàn)有下列結(jié)論,其中正確的是:( )
①的圖象關(guān)于直線對稱;②的圖象關(guān)于點對稱;③在區(qū)間上是減函數(shù);④在區(qū)間內(nèi)有8個零點.
A.①③B.②④C.①③④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年,全國各地區(qū)堅持穩(wěn)中求進工作總基調(diào),經(jīng)濟運行總體平穩(wěn),發(fā)展水平邁上新臺階,發(fā)展質(zhì)量穩(wěn)步上升,人民生活福祉持續(xù)增進,全年最終消費支出對國內(nèi)生產(chǎn)總值增長的貢獻率為57.8%.下圖為2019年居民消費價格月度漲跌幅度:(同比(本期數(shù)-去年同期數(shù))/去年同期數(shù),環(huán)比(本期數(shù)-上期數(shù))/上期數(shù)
下列結(jié)論中不正確的是( )
A.2019年第三季度的居民消費價格一直都在增長
B.2018年7月份的居民消費價格比同年8月份要低一些
C.2019年全年居民消費價格比2018年漲了2.5%以上
D.2019年3月份的居民消費價格全年最低
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓的左頂點為,右焦點為,過原點的直線(與坐標(biāo)軸不重合)與橢圓交于點、,直線、分別與軸交于點、.
(1)若,求點的橫坐標(biāo);
(2)設(shè)直線、的斜率分別為、,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中心在原點的橢圓E的一個焦點與拋物線的焦點關(guān)于直線對稱,且橢圓E與坐標(biāo)軸的一個交點坐標(biāo)為.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)過點的直線l(直線的斜率k存在且不為0)交E于A,B兩點,交x軸于點P點A關(guān)于x軸的對稱點為D,直線BD交x軸于點Q.試探究是否為定值?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,是橢圓:的左右兩個焦點,過的直線與交于,兩點(在第一象限),的周長為8,的離心率為.
(1)求的方程;
(2)設(shè),為的左右頂點,直線的斜率為,的斜率為,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com