【題目】某校高一(1)班的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見(jiàn)部分如圖.

(Ⅰ)求分?jǐn)?shù)在[50,60)的頻率及全班人數(shù);

(Ⅱ)求分?jǐn)?shù)在[80,90)之間的頻數(shù),并計(jì)算頻率分布直方圖中[80,90)間矩形的高;

(Ⅲ)若要從分?jǐn)?shù)在[80,100)之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份分?jǐn)?shù)在[90,100)之間的概率.

【答案】(1)25,(2)0.012,(3)0.7.

【解析】 試題分析:(Ⅰ)先由頻率分布直方圖求出[50,60)的頻率,結(jié)合莖葉圖中得分在[50,60)的人數(shù)即可求得本次考試的總?cè)藬?shù);()根據(jù)莖葉圖的數(shù)據(jù),利用()中的總?cè)藬?shù)減去[50,80)外的人數(shù),即可得到[50,80)內(nèi)的人數(shù),從而可計(jì)算頻率分布直方圖中[80,90)間矩形的高;()用列舉法列舉出所有的基本事件,找出符合題意得基本事件個(gè)數(shù),利用古典概型概率計(jì)算公式即可求出結(jié)果.

(Ⅰ)分?jǐn)?shù)在[50,60)的頻率為0.008×10=0.08,

由莖葉圖知:分?jǐn)?shù)在[50,60)之間的頻數(shù)為2,

∴全班人數(shù)為

(Ⅱ)分?jǐn)?shù)在[80,90)之間的頻數(shù)為25﹣22=3;

頻率分布直方圖中[80,90)間的矩形的高為

(Ⅲ)將[80,90)之間的3個(gè)分?jǐn)?shù)編號(hào)為a1,a2,a3,[90,100)之間的2個(gè)分?jǐn)?shù)編號(hào)為b1,b2

在[80,100)之間的試卷中任取兩份的基本事件為:

(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)共10個(gè),

其中,至少有一個(gè)在[90,100)之間的基本事件有7個(gè),

故至少有一份分?jǐn)?shù)在[90,100)之間的概率是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求證:PC⊥BC;
(2)求點(diǎn)A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PD垂直于底面ABCD,AD=PD,E分別為AP的中點(diǎn).

(Ⅰ)求證:DE垂直于平面PAB;

(Ⅱ)設(shè)BC =,AB=2,求直線EB與平面ABD所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為函數(shù)f(x)的不動(dòng)點(diǎn).已知f(x)=x2+bx+c
(1)若f(x)有兩個(gè)不動(dòng)點(diǎn)為﹣3,2,求函數(shù)y=f(x)的零點(diǎn)?
(2)若c= 時(shí),函數(shù)f(x)沒(méi)有不動(dòng)點(diǎn),求實(shí)數(shù)b的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知下列四個(gè)命題:
①函數(shù)f(x)= x﹣lnx(x>0),則y=f(x)在區(qū)間( ,1)內(nèi)無(wú)零點(diǎn),在區(qū)間(1,e)內(nèi)有零點(diǎn);
②函數(shù)f(x)=log2(x+ ),g(x)=1+ 不都是奇函數(shù);
③若函數(shù)f(x)滿足f(x﹣1)=﹣f(x+1),且f(1)=2,則f(7)=﹣2;
④設(shè)x1、x2是關(guān)于x的方程|logax|=k(a>0且a≠1)的兩根,則x1x2=1,
其中正確命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)市場(chǎng)調(diào)查:生產(chǎn)某產(chǎn)品需投入年固定成本為3萬(wàn)元,每生產(chǎn)x萬(wàn)件,需另投入流動(dòng)成本為W(x)萬(wàn)元,在年產(chǎn)量不足8萬(wàn)件時(shí),W(x)= x2+x(萬(wàn)元),在年產(chǎn)量不小于8萬(wàn)件時(shí),W(x)=6x+ ﹣38(萬(wàn)元).通過(guò)市場(chǎng)分析,每件產(chǎn)品售價(jià)為5元時(shí),生產(chǎn)的商品能當(dāng)年全部售完.
(1)寫出年利潤(rùn)L(x)(萬(wàn)元)關(guān)于年產(chǎn)量x(萬(wàn)件)的函數(shù)解析式;
(2)寫出當(dāng)產(chǎn)量為多少時(shí)利潤(rùn)最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司今年一月份推出新產(chǎn)品A,其成本價(jià)為492元/件,經(jīng)試銷調(diào)查,銷售量與銷售價(jià)的關(guān)系如下表:

銷售價(jià)(x/元件)

650

662

720

800

銷售量(y件)

350

333

281

200

由此可知,銷售量y(件)與銷售價(jià)x(元/件)可近似看作一次函數(shù)y=kx+b的關(guān)系(通常取表中相距較遠(yuǎn)的兩組數(shù)據(jù)所得一次函數(shù)較為精確).
(1)寫出以x為自變量的函數(shù)y的解析式及定義域;
(2)試問(wèn):銷售價(jià)定為多少時(shí),一月份銷售利潤(rùn)最大?并求最大銷售利潤(rùn)和此時(shí)的銷售量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四邊形ABCD中,∠D=2∠B,且AD=1,CD=3,cos∠B=

(1)求△ACD的面積;
(2)若BC=2 ,求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)mR

(Ⅰ)當(dāng)m=e(e為自然對(duì)數(shù)的底數(shù))時(shí),求f(x)的極小值;

(Ⅱ)討論函數(shù)零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案