方程x2+y2+2ax-by+c=0表示圓心為C(2,2),半徑為2的圓,則a、b、c的值依次為(   )

A.2、4、4          B.-2、4、4          C.2、-4、4          D.2、-4、-4

 

【答案】

B

【解析】

試題分析:因?yàn),方程x2+y2+2ax-by+c=0表示圓心為C(2,2),半徑為2的圓,

所以,,解得,,選B.

考點(diǎn):圓的一般方程

點(diǎn)評(píng):簡單題,解答此類問題,可利用“配方法”或“公式法”。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

命題p:方程x2+y2-4x+2ay+2a2-2a+1=0表示圓,
命題q:?m∈[0,3],?x∈R使不等式x2-2ax+7≥
2m+8
成立,
如果命題“p∨q”為真命題,且“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程x2+y2-2ax+a2+2a-3=0表示圓,且過點(diǎn)A(a,a)可作該圓的兩條切線,則實(shí)數(shù)a的取值范圍為
a<-3或1<a<
3
2
a<-3或1<a<
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點(diǎn)為F1(-c,0),F(xiàn)2(c,0),點(diǎn)Q是橢圓外的動(dòng)點(diǎn),滿足|
F1Q
|=2a,點(diǎn)P是線段F1Q與該橢圓的交點(diǎn),曲線C的方程是x2+y2=a2
(1)若點(diǎn)P的橫坐標(biāo)為
a
2
,證明:|
F1P
|=a+
c
2

(2)試問:曲線C上是否存在點(diǎn)M,使得△F1MF2的面積等于S=b2?若存在,求出橢圓離心率的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:x2+y2-2ax-2(a-1)y-1+2a=0.
(1)證明:不論a取何實(shí)數(shù),曲線C必過定點(diǎn);
(2)當(dāng)a≠1時(shí),若曲線C與直線y=2x-1相切,求a的值;
(3)對(duì)所有的a∈R且a≠1,是否存在直線l與曲線C總相切?如果存在,求出l的方程;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

若方程x2+y2-2ax+a2+2a-3=0表示圓,且過點(diǎn)A(a,a)可作該圓的兩條切線,則實(shí)數(shù)a的取值范圍為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案