已知等差數(shù)列{an}的各項均為正數(shù),a1=3,前n項和為Sn,{bn}是等比數(shù)列,b1=1,b2S2=16,b2+S3=17.
(1)求{an}與{bn}的通項公式;
(2)求證:
1
S1
+
1
S2
+…+
1
Sn
3
4
對一切n∈N*都成立.
考點:數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(!)設(shè){an}的公差為d(d>0),{bn}的公比為q,利用等差數(shù)列的求和公式,及等比數(shù)列的通項公式,建立方程組,從而可求數(shù)列{an}與{bn}的通項公式.
(2)確定{Sn}的通項,利用裂項法求和,即可證明結(jié)論.
解答: (1)解:設(shè){an}的公差為d(d>0),{bn}的公比為q,
b2S2=(6+d)q=16
b2+S3=(9+3d)+q=17

解得
d=2
q=2
d=-
16
3
q=24
(舍)

∴an=3+2(n-1)=2n+1,bn=2n-1
(2)證明:Sn=3+5+…+(2n+1)=n(n+2),
1
S1
+
1
S2
+…+
1
Sn
=
1
1×3
+
1
2×4
+
1
3×5
+…+
1
n(n+2)

=
1
2
(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n
-
1
n+2

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)=
3
4
-
1
2
1
n+1
+
1
n+2
3
4
點評:本題考查數(shù)列的通項與求和,解題的關(guān)鍵是利用基本量法確定數(shù)列的公差與公比.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的程序框圖中,要想使輸入的值與輸出的值相等,輸入的a值應(yīng)為( 。
A、1B、3C、1或3D、0或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a為正實數(shù),函數(shù)f(x)=
-2x(x2-a)+x2,x2≥a
2x(x2-a)+x2x2<a

(Ⅰ)當a=4時,求f(x)的單調(diào)遞增區(qū)間:
(Ⅱ)函數(shù)f(x)在x∈[0,l]上的最小值為f(1),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列敘述中正確的是
 

①若一個平面內(nèi)的兩條直線與另一個平面都平行,那么這兩個平面相互平行;
②若一個平面經(jīng)過另一個平面的垂線,那么這兩個平面相互垂直;
③垂直于同一直線的兩個平面相互平行;
④若兩個平面垂直,那么垂直于其中一個平面的直線與另一個平面平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A′B′C′D′中,求證:平面AB′D′∥平面C′BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)奇函數(shù)f(x)=ax3+bx+c(a≠0)的圖象在點x=-1處的切線與直線6x+y+3=0平行,其導(dǎo)函數(shù)f′(x)的圖象經(jīng)過點(0,-12).
(1)求實數(shù)a,b,c的值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間,并求函數(shù)f(x)在[-1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD所在平面外一點P,PA⊥平面ABCD,E、F分別是AB、PC的中點. 
(1)求證:EF∥平面PAD; 
(2)求證:EF⊥CD;
(3)若∠PDA=45°,求證:EF⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
25
+
y2
9
=1左,右焦點分別為F1,F(xiàn)2,點P是橢圓上一點,且∠F1PF2=60°.
①求△PF1F2的周長
②求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的兩條準線將兩焦點間的線段三等分,則雙曲線的離心率是
 

查看答案和解析>>

同步練習冊答案