已知橢圓的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點的直線與橢圓
相交于兩點
,設(shè)
為橢圓上一點,且滿足
(其中
為坐標原點),求整數(shù)
的最大值.
(Ⅰ). (Ⅱ)
的最大整數(shù)值為1.
【解析】
試題分析:(Ⅰ)由題知, 所以
.即
.
又因為,所以
,
.
故橢圓的方程為
. 5分
(Ⅱ)由題意知直線的斜率存在.
設(shè):
,
,
,
,
由得
.
,
.
,
8分
∵,∴
,
,
.
∵點在橢圓上,∴
,
∴ 12分
,
∴的最大整數(shù)值為1.
14分
考點:本題主要考查橢圓標準方程,直線與橢圓的位置關(guān)系,存在性問題研究。
點評:難題,曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運用韋達定理。本題求橢圓、標準方程時,主要運用了橢圓的幾何性質(zhì)。對于存在性問題,往往先假設(shè)存在,利用已知條件加以探究,以明確計算的合理性。本題(III)通過假設(shè)t,利用韋達定理進一步確定t與k的關(guān)系式,通過確定函數(shù)的值域,得到t的范圍。
科目:高中數(shù)學 來源: 題型:
A、
| ||||
B、
| ||||
C、
| ||||
D、以上均不對 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
1 |
2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
| ||
3 |
OA |
OB |
1 |
2 |
OM |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
1 |
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com