【題目】已知函數f(x)= .
(1)求f(x)的極值;
(2)試比較20162017與20172016的大小,并說明理由.
【答案】
(1)解:f(x)= 的定義域是(0,+∞),
f′(x)= = ,
令f′(x)>0,解得:x<e,令f′(x)<0,解得:x>e,
∴f(x)在(0,e)遞增,在(e,+∞)遞減,
∴f(x)極大值=f(e)= ,無極小值;
(2)解:∵f(x)在( ,+∞)遞減,
∴ > ,
∴2017ln2016>2016ln2017,
∴20162017>20172016.
【解析】(1)求出f(x)的導數,解關于導函數的不等式,求出函數的單調區(qū)間,從而求出函數的極值即可;(2)根據函數的單調性判斷即可.
【考點精析】解答此題的關鍵在于理解函數的極值與導數的相關知識,掌握求函數的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值.
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x),若在定義域內存在x0 , 使得f(﹣x0)=﹣f(x0)成立,則稱x0為函數y=f(x)的局部對稱點.
(1)若a、b∈R且a≠0,證明:函數f(x)=ax2+bx﹣a必有局部對稱點;
(2)若函數f(x)=2x+c在定義域[﹣1,2]內有局部對稱點,求實數c的取值范圍;
(3)若函數f(x)=4x﹣m2x+1+m2﹣3在R上有局部對稱點,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】執(zhí)行如圖所示程序框圖,若輸入a,b,i的值分別為6,4,1,則輸出a和i的值分別為( )
A.2,4
B.3,4
C.2,5
D.2,6
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務情況,隨機訪問部分職工,根據被訪問職工對該部門的評分,繪制頻率分布直方圖(如圖所示).
(1)求頻率分布表中①、②、③位置相應數據,并在答題紙上完成頻率分布直方圖;
組號 | 分組 | 頻數 | 頻率 |
第1組 | [50,60) | 5 | 0.050 |
第2組 | [60,70) | ① | 0.350 |
第3組 | [70,80) | 30 | ② |
第4組 | [80,90) | 20 | 0.200 |
第5組 | [90,100] | 10 | 0.100 |
合計 | ③ | 1.00 |
(2)為進一步了解情況,該企業(yè)決定在第3,4,5組中用分層抽樣抽取5名職工進行座談,求第3,4,5組中各自抽取的人數;
(3)求該樣本平均數 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某休閑農莊有一塊長方形魚塘ABCD,AB=50米,BC=25 米,為了便于游客休閑散步,該農莊決定在魚塘內建三條如圖所示的觀光走廊OE、EF和OF,考慮到整體規(guī)劃,要求O是AB的中點,點E在邊BC上,點F在邊AD上,且∠EOF=90°.
(1)設∠BOE=α,試將△OEF的周長l表示成α的函數關系式,并求出此函數的定義域;
(2)經核算,三條走廊每米建設費用均為4000元,試問如何設計才能使建設總費用最低并求出最低總費用.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com