已知、為橢圓的左、右焦點,且點在橢圓上.
(1)求橢圓的方程;
(2)過的直線交橢圓兩點,則的內(nèi)切圓的面積是否存在最大值?
若存在其最大值及此時的直線方程;若不存在,請說明理由.

(1);(2)當(dāng)不存在時圓面積最大, ,此時直線方程為.

解析試題分析:本題考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線的方程、平面內(nèi)兩點間的距離公式、三角形面積公式等基礎(chǔ)知識,考查用代數(shù)方法研究圓錐曲線的性質(zhì)以及數(shù)形結(jié)合的數(shù)學(xué)思想方法,考查運算求解能力、綜合分析和解決問題的能力.第一問,先設(shè)出橢圓的標(biāo)準(zhǔn)方程,利用橢圓的定義列出,解出的值,從而得到橢圓的標(biāo)準(zhǔn)方程;第二問,假設(shè)直線的斜率存在,設(shè)出直線方程與橢圓方程聯(lián)立,消參得出關(guān)于的方程,得到兩根之和、兩根之積,求出的面積,面積之和內(nèi)切圓的半徑有關(guān),所以當(dāng)的面積最大時,內(nèi)切圓面積最大,換一種形式求的面積,利用換元法和配方法求出面積的最大值,而直線的斜率不存在時,易求出和圓面積,經(jīng)過比較,當(dāng)不存在時圓面積最大.
試題解析:(Ⅰ)由已知,可設(shè)橢圓的方程為,
因為,所以,,
所以,橢圓的方程為
(也可用待定系數(shù)法,或用)      4分
(2)當(dāng)直線斜率存在時,設(shè)直線,由,
設(shè),,     6分
所以,
設(shè)內(nèi)切圓半徑為,因為的周長為(定值),,所以當(dāng)的面積最大時,內(nèi)切圓面積最大,又,    8分
,則,所以    10分
又當(dāng)不存在時,,此時,
故當(dāng)不存在時圓面積最大, ,此時直線方程為.      12分
考點:1.橢圓的標(biāo)準(zhǔn)方程;2.直線的方程;3.韋達定理;4.三角形面積公式;5.配方法求函數(shù)的最值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知頂點是坐標(biāo)原點,對稱軸是軸的拋物線經(jīng)過點
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)直線過定點,斜率為,當(dāng)為何值時,直線與拋物線有公共點?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知兩點,直線AM、BM相交于點M,且這兩條直線的斜率之積為.
(Ⅰ)求點M的軌跡方程;
(Ⅱ)記點M的軌跡為曲線C,曲線C上在第一象限的點P的橫坐標(biāo)為1,直線PE、PF與圓)相切于點E、F,又PE、PF與曲線C的另一交點分別為Q、R.
求△OQR的面積的最大值(其中點O為坐標(biāo)原點).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

給定橢圓,稱圓心在坐標(biāo)原點O,半徑為的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個焦點分別是.
(1)若橢圓C上一動點滿足,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過點作直線l與橢圓C只有一個交點,且截橢圓C的“伴隨圓”所得弦長為,求P點的坐標(biāo);
(3)已知,是否存在a,b,使橢圓C的“伴隨圓”上的點到過兩點的直線的最短距離.若存在,求出a,b的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:的離心率與等軸雙曲線的離心率互為倒數(shù),直線與以原點為圓心,以橢圓C的短半軸長為半徑的圓相切。
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)M是橢圓的上頂點,過點M分別作直線MA,MB交橢圓于A,B兩點,設(shè)兩直線的斜率分別為k1,k2,且k1+k2=2,證明:直線AB過定點(―1,―1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的左、右焦點分別為,橢圓的離心率為,且橢圓經(jīng)過點
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)線段是橢圓過點的弦,且,求內(nèi)切圓面積最大時實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知的兩頂點坐標(biāo),圓的內(nèi)切圓,在邊,上的切點分別為,(從圓外一點到圓的兩條切線段長相等),動點的軌跡為曲線.

(1)求曲線的方程;
(2)設(shè)直線與曲線的另一交點為,當(dāng)點在以線段為直徑的圓上時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義:對于兩個雙曲線,,若的實軸是的虛軸,的虛軸是的實軸,則稱,為共軛雙曲線.現(xiàn)給出雙曲線和雙曲線,其離心率分別為.
(1)寫出的漸近線方程(不用證明);
(2)試判斷雙曲線和雙曲線是否為共軛雙曲線?請加以證明.
(3)求值:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓中心在原點,焦點在軸上,焦距為2,離心率為
(1)求橢圓的方程;
(2)設(shè)直線經(jīng)過點(0,1),且與橢圓交于兩點,若,求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案