己知斜率為1的直線l與雙曲線C:相交于B、D兩點,且BD的中點為M(1,3).
(Ⅰ)求C的離心率;
(Ⅱ)設(shè)C的右頂點為A,右焦點為F,|DF|•|BF|=17,證明:過A、B、D三點的圓與x軸相切.
【答案】分析:(Ⅰ)由直線過點(1,3)及斜率可得直線方程,直線與雙曲線交于BD兩點的中點為(1,3),可利用直線與雙曲線消元后根據(jù)中點坐標公式找出a,b的關(guān)系式即求得離心率.
(Ⅱ)利用離心率將條件|FA||FB|=17,用含a的代數(shù)式表示,即可求得a,則A點坐標可得(1,0),由于A在x軸上所以,只要證明2AM=BD即證得.
解答:解:(Ⅰ)由題設(shè)知,l的方程為:y=x+2,代入C的方程,并化簡,
得(b2-a2)x2-4a2x-a2b2-4a2=0,
設(shè)B(x1,y1),D(x2,y2),則,①
由M(1,3)為BD的中點知
,即b2=3a2,②

∴C的離心率
(Ⅱ)由①②知,C的方程為:3x2-y2=3a2,A(a,0),F(xiàn)(2a,0),

故不妨設(shè)x1≤-a,x2≥a,
,
|BF|•|FD|=(a-2x1)(2x2-a)=-4x1x2+2a(x1+x2)-a2=5a2+4a+8.
又|BF|•|FD|=17,故5a2+4a+8=17.
解得a=1,或(舍去),
=6,
連接MA,則由A(1,0),M(1,3)知|MA|=3,
從而MA=MB=MD,且MA⊥x軸,
因此以M為圓心,MA為半徑的圓經(jīng)過A、B、D三點,且在點A處與x軸相切,
所以過A、B、D三點的圓與x軸相切.
點評:本題考查了圓錐曲線、直線與圓的知識,考查學生運用所學知識解決問題的能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

己知斜率為1的直線l與雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
相交于B、D兩點,且BD的中點為M(1,3).
(Ⅰ)求C的離心率;
(Ⅱ)設(shè)C的右頂點為A,右焦點為F,|DF|•|BF|=17,證明:過A、B、D三點的圓與x軸相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

    己知斜率為1的直線l與雙曲線C相交于BD兩點,且BD的中點為

   (Ⅰ)求C的離心率;

   (Ⅱ)設(shè)C的右頂點為A,右焦點為F,,證明:過A、B、D三點的圓與x軸相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

    己知斜率為1的直線l與雙曲線C相交于B、D兩點,且BD的中點為

   (Ⅰ)求C的離心率;

   (Ⅱ)設(shè)C的右頂點為A,右焦點為F,,證明:過AB、D三點的圓與x軸相切.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年高考試題(全國卷2)解析版(理) 題型:解答題

 

    己知斜率為1的直線l與雙曲線C相交于B、D兩點,且BD的中點為

   (Ⅰ)求C的離心率;

   (Ⅱ)設(shè)C的右頂點為A,右焦點為F,,證明:過AB、D三點的圓與x軸相切.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年全國統(tǒng)一高考數(shù)學試卷Ⅱ(文科)(大綱版)(解析版) 題型:解答題

己知斜率為1的直線l與雙曲線C:相交于B、D兩點,且BD的中點為M(1,3).
(Ⅰ)求C的離心率;
(Ⅱ)設(shè)C的右頂點為A,右焦點為F,|DF|•|BF|=17,證明:過A、B、D三點的圓與x軸相切.

查看答案和解析>>

同步練習冊答案