若函數(shù)函數(shù),則的最小值為(      )
A.B.
C.D.
D

試題分析:由題意的最小值,可知直線與曲線上的兩點(diǎn)的距離的平方,函數(shù),,則由題意知,解得,此時(shí).點(diǎn)到直線的距離的平方為:,故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

若函數(shù)上為增函數(shù)(為常數(shù)),則稱為區(qū)間上的“一階比增函數(shù)”,的一階比增區(qū)間.
(1) 若上的“一階比增函數(shù)”,求實(shí)數(shù)的取值范圍;
(2) 若  (,為常數(shù)),且有唯一的零點(diǎn),求的“一階比增區(qū)間”;
(3)若上的“一階比增函數(shù)”,求證:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)處存在極值.
(1)求實(shí)數(shù)的值;
(2)函數(shù)的圖像上存在兩點(diǎn)A,B使得是以坐標(biāo)原點(diǎn)O為直角頂點(diǎn)的直角三角形,且斜邊AB的中點(diǎn)在軸上,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),討論關(guān)于的方程的實(shí)根個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個(gè)極值點(diǎn),且,求證:;
(Ⅲ)設(shè),對(duì)于任意時(shí),總存在,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列曲線的所有切線構(gòu)成的集合中,存在無(wú)數(shù)對(duì)互相垂直的切線的曲線是(  )
A.f(x)=exB.f(x)=x3
C.f(x)=lnxD.f(x)=sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)f(x)=x2-2x-4ln x,則f′(x)>0的解集為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示是的導(dǎo)數(shù)的圖像,下列四個(gè)結(jié)論:

在區(qū)間上是增函數(shù); 
的極小值點(diǎn);
在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù);
的極小值點(diǎn).其中正確的結(jié)論是
A.①②③
B.②③
C.③④
D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)f(x)=x3-2x2+3m,x∈[0,+∞),若f(x)+5≥0恒成立,則實(shí)數(shù)m的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)直線xt,與函數(shù)f(x)=x2,g(x)=ln x的圖象分別交于點(diǎn)M,N,則當(dāng)|MN|達(dá)到最小時(shí)t的值為_(kāi)_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案