已知函數(shù)

(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(Ⅱ)求函數(shù)的極值.

 

【答案】

(Ⅰ). (Ⅱ)當(dāng)時(shí),函數(shù)無(wú)極值。

【解析】

試題分析:函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013081913213810759878/SYS201308191324209720108681_DA.files/image004.png">,.   2分

(Ⅰ)當(dāng)時(shí),,

,

在點(diǎn)處的切線方程為,

.        6分

(Ⅱ)由可知:

①當(dāng)時(shí),,函數(shù)上的增函數(shù),函數(shù)無(wú)極值;

②當(dāng)時(shí),由,解得;

時(shí),,時(shí),

處取得極小值,且極小值為,無(wú)極大值.

綜上:當(dāng)時(shí),函數(shù)無(wú)極值        12分

考點(diǎn):導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值。

點(diǎn)評(píng):中檔題,本題較為典型,是導(dǎo)數(shù)應(yīng)用的基本問(wèn)題。曲線切線的斜率等于在切點(diǎn)處的導(dǎo)函數(shù)值。研究函數(shù)的極值遵循“求導(dǎo)數(shù),求駐點(diǎn),研究單調(diào)性,確定極值”。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年新建二中一模文)已知函數(shù).

   (Ⅰ)當(dāng)時(shí),若滿足,,試求的解析式;

   (Ⅱ)當(dāng)時(shí),圖象上的任意一點(diǎn)處的切線斜率恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)

當(dāng)時(shí),求該函數(shù)的定義域和值域;

如果在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011屆廣東省深圳高級(jí)中學(xué)高三高考最后模擬考試文數(shù) 題型:解答題

(本小題滿分14分)已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線處的切線方程;
(Ⅱ)求函數(shù)在區(qū)間上的最小值;
(Ⅲ)若關(guān)于的方程在區(qū)間內(nèi)有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年全國(guó)普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(福建卷解析版) 題型:解答題

已知函數(shù)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;求函數(shù)的極值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年甘肅省天水市高三第三次考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題10分)已知函數(shù)當(dāng)時(shí),求不等式的解集;若的解集包含,求a的取值范圍。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案