【題目】已知函數(shù)(其中, 為自然對數(shù)的底數(shù), …).
(1)若函數(shù)僅有一個極值點,求的取值范圍;
(2)證明:當時,函數(shù)有兩個零點, ,且.
【答案】(1)(2)見解析
【解析】試題分析:(1)求出函數(shù)的導函數(shù),轉(zhuǎn)化不等式,再通過與的大小討論即可求的取值范圍;(2)通過的范圍及的零點個數(shù),即可確定函數(shù)恒成立的條件,通過構(gòu)造函數(shù)的方法,轉(zhuǎn)化成利用導函數(shù)求恒成立問題.
試題解析:(1),
由得到或 (*)
由于僅有一個極值點,
關(guān)于的方程(*)必無解,
①當時,(*)無解,符合題意,
②當時,由(*)得,故由得,
由于這兩種情況都有,當時, ,于是為減函數(shù),當時, ,于是為增函數(shù),∴僅為的極值點,綜上可得的取值范圍是;
(2)由(1)當時, 為的極小值點,
又∵對于恒成立,
對于恒成立,
對于恒成立,
∴當時, 有一個零點,當時, 有另一個零點,
即,
且,(#)
所以,
下面再證明,即證,
由得,
由于為減函數(shù),
于是只需證明,
也就是證明,
,
借助(#)代換可得,
令,
則,
∵為的減函數(shù),且,
∴在恒成立,
于是為的減函數(shù),即,
∴,這就證明了,綜上所述, .
科目:高中數(shù)學 來源: 題型:
【題目】如圖,平面ABCD⊥平面ADEF,四邊形ABCD為菱形,四邊形ADEF為矩形,M、N分別是EF、BC的中點,AB=2AF=2,∠CBA=60°.
(1)求證:AN⊥DM;
(2)求直線MN與平面ADEF所成的角的正切值;
(3)求三棱錐D﹣MAN的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,橢圓和拋物線交于兩點,且直線恰好通過橢圓的右焦點,
(1)求橢圓的標準方程;
(2)經(jīng)過的直線和橢圓交于兩點,交拋物線于兩點, 是拋物線的焦點,是否存在直線,使得,若存在,求出直線的方程,若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,四個頂點構(gòu)成的菱形的面積是4,圓過橢圓的上頂點作圓的兩條切線分別與橢圓相交于兩點(不同于點),直線的斜率分別為.
(1)求橢圓的方程;
(2)當變化時,①求的值;②試問直線是否過某個定點?若是,求出該定點;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系 中,直線 的參數(shù)方程為 為參數(shù)),以該直角坐標系的原點 為極點, 軸的非負半軸為極軸的極坐標系下,圓 的方程為 .
(1)求直線 的普通方程和圓 的圓心的極坐標;
(2)設(shè)直線 和圓 的交點為 、 ,求弦 的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】觀察研究某種植物的生長速度與溫度的關(guān)系,經(jīng)過統(tǒng)計,得到生長速度(單位:毫米/月)與月平均氣溫的對比表如下:
溫度 | -5 | 0 | 6 | 8 | 12 | 15 | 20 |
生長速度 | 2 | 4 | 5 | 6 | 7 | 8 | 10 |
(1)求生長速度關(guān)于溫度的線性回歸方程;(斜率和截距均保留為三位有效數(shù)字);
(2)利用(1)中的線性回歸方程,分析氣溫從至時生長速度的變化情況,如果某月的平均氣溫是時,預測這月大約能生長多少.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,函數(shù), .(的圖象連續(xù)不斷)
(1) 求的單調(diào)區(qū)間;
(2) 當時,證明:存在,使;
(3) 若存在屬于區(qū)間的,且,使,證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量, ,函數(shù),函數(shù)在軸上的截距我,與軸最近的最高點的坐標是.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)將函數(shù)的圖象向左平移()個單位,再將圖象上各點的縱坐標不變,橫坐標伸長到原來的2倍,得到函數(shù)的圖象,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)有一個容積V一定的鋁合金蓋的圓柱形鐵桶,已知單位面積鋁合金的價格是鐵的3倍,當總造價最少時,桶高為( )
A.
B.
C.2
D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com