【題目】已知橢圓:的短軸長(zhǎng)為,離心率為.
(1)求橢圓的方程;
(2)求過橢圓的右焦點(diǎn)且傾斜角為135°的直線,被橢圓截得的弦長(zhǎng);
(3)若直線與橢圓相交于,兩點(diǎn)(不是左右頂點(diǎn)),且以為直徑的圓過橢圓的右頂點(diǎn),求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
【答案】(1)橢圓的方程:(2)(3)見解析,
【解析】
(1)根據(jù)橢圓短軸長(zhǎng)公式和離心率公式進(jìn)行求解即可;
(2)求出過橢圓的右焦點(diǎn)且傾斜角為135°的直線方程,將與橢圓方程聯(lián)立,結(jié)合橢圓弦長(zhǎng)公式和一元二次方程根與系數(shù)關(guān)系進(jìn)行求解即可;
(3)根據(jù)以為直徑的圓過橢圓的右頂點(diǎn),可以得到向量的數(shù)量積為零,將直線方程與橢圓方程聯(lián)立,利用一元二次方程根與系數(shù)進(jìn)行求解即可.
(1)因?yàn)闄E圓:的短軸長(zhǎng)為,離心率為,
所以有且,而,解得,因此橢圓的標(biāo)準(zhǔn)方程為:;
(2)因?yàn)?/span>,所以橢圓的右焦點(diǎn)坐標(biāo)為,因此過橢圓的右焦點(diǎn)且傾斜角為135°的直線方程是,
因此有因此設(shè)交點(diǎn)坐標(biāo)分別為,因此有,因此有
,
所以直線被橢圓截得的弦長(zhǎng)為;
(3)設(shè),由題意可知,設(shè)橢圓右頂點(diǎn)的坐標(biāo)為:,因?yàn)橐?/span>為直徑的圓過橢圓的右頂點(diǎn),所以有
,
即.
直線與橢圓的方程聯(lián)立,得:
因此,
因此由可得:,化簡(jiǎn)得:
,或
當(dāng)時(shí),直線方程為該直線恒過點(diǎn)這與已知矛盾,故舍去;
當(dāng)時(shí),直線方程為該直線恒過點(diǎn),綜上所述:直線過定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為:.
(1)求直線和曲線的直角坐標(biāo)方程;
(2),直線和曲線交于、兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是無窮等比數(shù)列,若的每一項(xiàng)都等于它后面所有項(xiàng)的倍,則實(shí)數(shù)的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點(diǎn),,,動(dòng)點(diǎn)滿足.
(1)求動(dòng)點(diǎn)的軌跡方程,并說明方程表示的曲線類型;
(2)當(dāng)時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新高考取消文理科,實(shí)行“”模式,成績(jī)由語文、數(shù)學(xué)、外語統(tǒng)一高考成績(jī)和自主選考的3門普通高中學(xué)業(yè)水平考試等級(jí)性考試科目成績(jī)構(gòu)成.為了解各年齡層對(duì)新高考的了解情況,隨機(jī)調(diào)查50人,并把調(diào)查結(jié)果制成下表:
年齡(歲) | ||||||
頻數(shù) | 5 | 15 | 10 | 10 | 5 | 5 |
了解 | 4 | 12 | 6 | 5 | 2 | 1 |
(1)把年齡在稱為中青年,年齡在稱為中老年,請(qǐng)根據(jù)上表完成列聯(lián)表,是否有95%的把握判斷對(duì)新高考的了解與年齡(中青年、中老年)有關(guān)?
了解新高考 | 不了解新高考 | 總計(jì) | |
中青年 | |||
中老年 | |||
總計(jì) |
附:.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(2)若從年齡在的被調(diào)查者中隨機(jī)選取3人進(jìn)行調(diào)查,記選中的3人中了解新高考的人數(shù)為,求的分布列以及.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若養(yǎng)殖場(chǎng)每個(gè)月生豬的死亡率不超過,則該養(yǎng)殖場(chǎng)考核為合格,該養(yǎng)殖場(chǎng)在2019年1月到8月養(yǎng)殖生豬的相關(guān)數(shù)據(jù)如下表所示:
月份 | 1月 | 2月 | 3月 | 4月 | 5月 | 6月 | 7月 | 8月 |
月養(yǎng)殖量/千只3 | 3 | 4 | 5 | 6 | 7 | 9 | 10 | 12 |
月利潤(rùn)/十萬元 | 3.6 | 4.1 | 4.4 | 5.2 | 6.2 | 7.5 | 7.9 | 9.1 |
生豬死亡數(shù)/只 | 29 | 37 | 49 | 53 | 77 | 98 | 126 | 145 |
(1)從該養(yǎng)殖場(chǎng)2019年2月到6月這5個(gè)月中任意選取3個(gè)月,求恰好有2個(gè)月考核獲得合格的概率;
(2)根據(jù)1月到8月的數(shù)據(jù),求出月利潤(rùn)y(十萬元)關(guān)于月養(yǎng)殖量x(千只)的線性回歸方程(精確到0.001).
(3)預(yù)計(jì)在今后的養(yǎng)殖中,月利潤(rùn)與月養(yǎng)殖量仍然服從(2)中的關(guān)系,若9月份的養(yǎng)殖量為1.5萬只,試估計(jì):該月利潤(rùn)約為多少萬元?
附:線性回歸方程中斜率和截距用最小二乘法估計(jì)計(jì)算公式如下:,
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線和曲線交于A,B兩點(diǎn)(點(diǎn)A在第二象限).過A作斜率為的直線交曲線M于點(diǎn)C(不同于點(diǎn)A),過點(diǎn)作斜率為的直線交曲線于E,F兩點(diǎn),且.
(I)求的取值范圍;
(Ⅱ)設(shè)的面積為S,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=|lnx|,若函數(shù)g(x)=f(x)-ax在區(qū)間(0,4)上有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A. (0,)B. (,e)C. (,)D. (0,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某國(guó)營(yíng)企業(yè)集團(tuán)公司現(xiàn)有員工1000名,平均每人每年創(chuàng)造利潤(rùn)10萬元.為了激化內(nèi)部活力,增強(qiáng)企業(yè)競(jìng)爭(zhēng)力,集團(tuán)公司董事會(huì)決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出()名員工從事第三產(chǎn)業(yè);調(diào)整后,他們平均每人每年創(chuàng)造利潤(rùn)萬元,剩下的員工平均每人每年創(chuàng)造的利潤(rùn)可以提高%.
(Ⅰ)若要保證剩余員工創(chuàng)造的年總利潤(rùn)不低于原來1000名員工創(chuàng)造的年總利潤(rùn),則最多調(diào)整出多少名員工從事第三產(chǎn)業(yè)?
(Ⅱ)在(1)的條件下,若調(diào)整出的員工創(chuàng)造的年總利潤(rùn)始終不高于剩余員工創(chuàng)造的年總利潤(rùn),則實(shí)數(shù)的取值范圍是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com