(2012•深圳一模)執(zhí)行如圖的程序框圖,如果依次輸入函數(shù):f(x)=3x、f(x)=sinx、f(x)=x3、f(x)=x+
1
x
,那么輸出的函數(shù)f(x)為( 。
分析:由已知中的程序框圖可知符合第一個(gè)條件時(shí)函數(shù)為奇函數(shù),滿足第二個(gè)條件時(shí),函數(shù)在R上是增函數(shù),同時(shí)滿足兩個(gè)條件才能輸出,分析已知中四個(gè)函數(shù)的性質(zhì),比照后可得答案.
解答:解:由已知中的程序框圖可知,輸出的函數(shù)必須同時(shí)滿足函數(shù)為奇函數(shù)且在R上是增函數(shù),
∵函數(shù)f(x)=3x、不是奇函數(shù),故不滿足要求;
函數(shù)f(x)=sinx在R上不是增函數(shù),故不滿足要求;
函數(shù)f(x)=x3是奇函數(shù)且在R上是增函數(shù),故滿足要求;
函數(shù)f(x)=x+
1
x
在R上不是增函數(shù),故不滿足要求;
故選C.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是選擇結(jié)構(gòu),函數(shù)的奇偶性,函數(shù)的單調(diào)性,是算法與函數(shù)的性質(zhì)的綜合應(yīng)用,正確理解程序功能是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)隨機(jī)調(diào)查某社區(qū)80個(gè)人,以研究這一社區(qū)居民在20:00-22:00時(shí)間段的休閑方式與性別有關(guān)系,得到下面的數(shù)據(jù)表:
休閑方式
性別
看電視 看書 合計(jì)
10 50 60
10 10 20
合計(jì) 20 60 80
(1)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人在這一時(shí)間段以看書為休閑方式的人數(shù)為隨機(jī)變量X,求X的分布列和期望;
(2)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為“在20:00-22:00時(shí)間段的休閑方式與性別有關(guān)系”?
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d
參考數(shù)據(jù):
P(K2≥K0 0.15 0.10 0.05 0.025 0.010
K0 2.072 2.706 3.841 5.042 6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知點(diǎn)P(x,y)在不等式組
x-2≤0
y-1≤0
x+2y-2≥0
表示的平面區(qū)域上運(yùn)動(dòng),則z=x-y的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知等比數(shù)列{an}的第5項(xiàng)是二項(xiàng)式(
x
-
1
3x
)6
展開式的常數(shù)項(xiàng),則a3a7=
25
9
25
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)如圖,平行四邊形ABCD中,AB⊥BD,AB=2,BD=
2
,沿BD將△BCD折起,使二面角A-BD-C是大小為銳角α的二面角,設(shè)C在平面ABD上的射影為O.

(1)當(dāng)α為何值時(shí),三棱錐C-OAD的體積最大?最大值為多少?
(2)當(dāng)AD⊥BC時(shí),求α的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知數(shù)列{an}滿足:a1=
1
2
,an+1=
an
enan+e
,n∈N*
(其中e為自然對(duì)數(shù)的底數(shù)).
(1)求數(shù)列{an}的通項(xiàng)an;
(2)設(shè)Sn=a1+a2+…+an,Tn=a1•a2•a3•…•an,求證:Sn
n
n+1
,Tne-n2

查看答案和解析>>

同步練習(xí)冊(cè)答案