【題目】某地區(qū)經(jīng)過(guò)一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍.實(shí)現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例.得到如下餅圖:
則下面結(jié)論中不正確的是
A. 新農(nóng)村建設(shè)后,種植收入減少
B. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上
C. 新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍
D. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過(guò)了經(jīng)濟(jì)收入的一半
【答案】A
【解析】分析:首先設(shè)出新農(nóng)村建設(shè)前的經(jīng)濟(jì)收入為M,根據(jù)題意,得到新農(nóng)村建設(shè)后的經(jīng)濟(jì)收入為2M,之后從圖中各項(xiàng)收入所占的比例,得到其對(duì)應(yīng)的收入是多少,從而可以比較其大小,并且得到其相應(yīng)的關(guān)系,從而得出正確的選項(xiàng).
詳解:設(shè)新農(nóng)村建設(shè)前的收入為M,而新農(nóng)村建設(shè)后的收入為2M,
則新農(nóng)村建設(shè)前種植收入為0.6M,而新農(nóng)村建設(shè)后的種植收入為0.74M,所以種植收入增加了,所以A項(xiàng)不正確;
新農(nóng)村建設(shè)前其他收入我0.04M,新農(nóng)村建設(shè)后其他收入為0.1M,故增加了一倍以上,所以B項(xiàng)正確;
新農(nóng)村建設(shè)前,養(yǎng)殖收入為0.3M,新農(nóng)村建設(shè)后為0.6M,所以增加了一倍,所以C項(xiàng)正確;
新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的綜合占經(jīng)濟(jì)收入的,所以超過(guò)了經(jīng)濟(jì)收入的一半,所以D正確;
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C經(jīng)過(guò)P(4,-2),Q(-1,3)兩點(diǎn),且圓心C在直線x+y-1=0上.
(1)求圓C的方程;
(2)若直線l∥PQ,且l與圓C交于點(diǎn)A,B且以線段AB為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)求函數(shù)的最小正周期和對(duì)稱軸方程;
(2)若,求的值域.
【答案】(1)對(duì)稱軸為,最小正周期;(2)
【解析】
(1)利用正余弦的二倍角公式和輔助角公式將函數(shù)解析式進(jìn)行化簡(jiǎn)得到,由周期公式和對(duì)稱軸公式可得答案;(2)由x的范圍得到,由正弦函數(shù)的性質(zhì)即可得到值域.
(1)
令,則
的對(duì)稱軸為,最小正周期;
(2)當(dāng)時(shí),,
因?yàn)?/span>在單調(diào)遞增,在單調(diào)遞減,
在取最大值,在取最小值,
所以,
所以.
【點(diǎn)睛】
本題考查正弦函數(shù)圖像的性質(zhì),考查周期性,對(duì)稱性,函數(shù)值域的求法,考查二倍角公式以及輔助角公式的應(yīng)用,屬于基礎(chǔ)題.
【題型】解答題
【結(jié)束】
21
【題目】已知等比數(shù)列的前項(xiàng)和為,公比,,.
(1)求等比數(shù)列的通項(xiàng)公式;
(2)設(shè),求的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某村電費(fèi)收取有以下兩種方案供農(nóng)戶選擇:
方案一:每戶每月收取管理費(fèi)2元,月用電量不超過(guò)30度時(shí),每度0.5元;超過(guò)30度時(shí),超過(guò)部分按每度0.6元收取;
方案二:不收管理費(fèi),每度0.58元.
(1)求方案一收費(fèi)(元)與用電量(度)間的函數(shù)關(guān)系;
(2)老王家九月份按方案一交費(fèi)35元,問(wèn)老王家該月用電多少度?
(3)老王家該月用電量在什么范圍內(nèi),選擇方案一比選擇方案二更好?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)對(duì)任意x,y∈R,總有f(x)+f(y)=f(x+y),且當(dāng)x>0時(shí),f(x)<0,f(1)=-.
(1)求證:f(x)是R上的單調(diào)減函數(shù).
(2)求f(x)在[-3,3]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的參數(shù)方程為 (t為參數(shù)),其中p>0,焦點(diǎn)為F,準(zhǔn)線為l.過(guò)拋物線上一點(diǎn)M作l的垂線,垂足為E.若|EF|=|MF|,點(diǎn)M的橫坐標(biāo)是3,則p= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(2x+ )+sin(2x﹣ )+2cos2x﹣1,x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[ ]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(2m+3)x+m2+2=0.
(1)若方程有實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;
(2)若方程兩實(shí)數(shù)根分別為x1、x2,且滿足x12+x22=31+|x1x2|,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中
①若,則函數(shù)在取得極值;
②直線與函數(shù)的圖像不相切;
③若(為復(fù)數(shù)集),且,則的最小值是3;
④定積分.
正確的有__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com