若圓數(shù)學(xué)公式與直線y=-1相切,則m=________.


分析:將圓的方程化為標(biāo)準(zhǔn)方程,找出圓心坐標(biāo)和圓的半徑,由圓x2+y2+mx-=0與直線y=-1相切,圓心到直線的距離等于圓的半徑,利用點(diǎn)到直線的距離公式列出關(guān)于m的方程,求出方程的解得到m的值.
解答:圓方程配方得(x+2+y2=
∴圓心為(-,0),r=,
由圓與直線y=-1相切,
得到0-(-1)=,即m2=3,
∴m=±
故答案為:
點(diǎn)評(píng):此題考查了直線與圓的位置關(guān)系,涉及的知識(shí)有:圓的標(biāo)準(zhǔn)方程,點(diǎn)到直線的距離公式,當(dāng)直線與圓相切時(shí),圓心到直線的距離等于圓的半徑,熟練掌握此性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建)如圖,橢圓E:
x2
a2
+
y2
b2
 =1(a>b>0)
的左焦點(diǎn)為F1,右焦點(diǎn)為F2,離心率e=
1
2
.過F1的直線交橢圓于A、B兩點(diǎn),且△ABF2的周長為8.
(Ⅰ)求橢圓E的方程.
(Ⅱ)設(shè)動(dòng)直線l:y=kx+m與橢圓E有且只有一個(gè)公共點(diǎn)P,且與直線x=4相較于點(diǎn)Q.試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一動(dòng)圓與已知⊙O1(x+
2
)2+y2=1
相外切,與⊙O2(x-
2
)2+y2=(2
3
-1)2
相內(nèi)切.
(Ⅰ)求動(dòng)圓圓心的軌跡C;
(Ⅱ)若軌跡C與直線y=kx+m (k≠0)相交于不同的兩點(diǎn)M、N,當(dāng)點(diǎn)A(0,-1)滿足|
AM
|=|
AN
|時(shí),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)一動(dòng)圓與已知相外切,與相內(nèi)切.

(Ⅰ)求動(dòng)圓圓心的軌跡C;

(Ⅱ)若A(0,1),軌跡C與直線y=kx+m (k≠0)相交于不同的兩點(diǎn)M、N,當(dāng)||=||時(shí),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)一動(dòng)圓與已知相外切,與相內(nèi)切.

(Ⅰ)求動(dòng)圓圓心的軌跡C;

(Ⅱ)若軌跡C與直線y=kx+m (k≠0)相交于不同的兩點(diǎn)M、N,當(dāng)點(diǎn)A(0,1)滿足||=|| 時(shí),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年寧夏銀川二中高考數(shù)學(xué)模擬試卷2(文科)(解析版) 題型:解答題

一動(dòng)圓與已知⊙O1相外切,與⊙O2相內(nèi)切.
(Ⅰ)求動(dòng)圓圓心的軌跡C;
(Ⅱ)若軌跡C與直線y=kx+m (k≠0)相交于不同的兩點(diǎn)M、N,當(dāng)點(diǎn)A(0,-1)滿足||=||時(shí),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案