已知函數(shù)的定義域是,的導(dǎo)函數(shù),且內(nèi)恒成立.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若,求的取值范圍;
(3)設(shè)的零點,,求證:
(1)的單調(diào)區(qū)間為;(2);(3)利用函數(shù)的單調(diào)性及放縮法證明

試題分析:(1),∵內(nèi)恒成立
內(nèi)恒成立,∴的單調(diào)區(qū)間為      4分
(2),∵內(nèi)恒成立
內(nèi)恒成立,即內(nèi)恒成立,
設(shè),
,,
故函數(shù)內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,
,∴            8分
(3)∵的零點,∴由(1),內(nèi)單調(diào)遞增,
∴當時,,即
,∵,∴,


                   14分
點評:導(dǎo)數(shù)本身是個解決問題的工具,是高考必考內(nèi)容之一,高考往往結(jié)合函數(shù)甚至是實際問題考查導(dǎo)數(shù)的應(yīng)用,求單調(diào)、最值、完成證明等,請注意歸納常規(guī)方法和常見注意點
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知是函數(shù)的兩個極值點.
(1)若,求函數(shù)的解析式;
(2)若,求實數(shù)的最大值;
(3)設(shè)函數(shù),若,且,求函數(shù)內(nèi)的最小值.(用表示)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

“函數(shù)”是“可導(dǎo)函數(shù)在點處取到極值”的  條件。 (    )
A.充分不必要B.必要不充分 C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)=,
(1)求函數(shù)的單調(diào)區(qū)間
(2)若關(guān)于的不等式對一切(其中)都成立,求實數(shù)的取值范圍;
(3)是否存在正實數(shù),使?若不存在,說明理由;若存在,求取值的范圍

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù) 在點處的切線斜率的最小值是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

若函數(shù),
(Ⅰ)當時,求函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)函數(shù)是否存在極值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)).
(1)當時,求證:上單調(diào)遞增;
(2)當時,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),其中為自然對數(shù)的底數(shù).
(Ⅰ)當時,求曲線處的切線與坐標軸圍成的三角形的面積;
(Ⅱ)若函數(shù)存在一個極大值和一個極小值,且極大值與極小值的積為,求
值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

定義在R上的可導(dǎo)函數(shù)f(x),已知y=e f ′(x)的圖象如下圖所示,則y=f(x)的增區(qū)間是
 
A.(-∞,1)B.(-∞,2)C.(0,1)D.(1,2)

查看答案和解析>>

同步練習冊答案