如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E,F且EF=,則下列結論中錯誤的是( ).
A.AC⊥BE
B.EF∥平面ABCD
C.三棱錐A-BEF的體積為定值
D.異面直線AE,BF所成的角為定值
D
【解析】∵AC⊥平面BB1D1D,又BE?平面BB1,D1D.
∴AC⊥BE,故A正確.
∵B1D1∥平面ABCD,又E、F在直線D1B1上運動,
∴EF∥平面ABCD,故B正確.
C中由于點B到直線B1D1的距離不變,故△BEF的面積為定值,又點A到平面BEF的距離為,故VA-BEF為定值.
當點E在D1處,點F為D1B1的中點時,建立空間直角坐標系,如圖所示,可得A(1,1,0),B(0,1,0),E(1,0,1),F ,
∴=(0,-1,1),=,
∴·=.
又||=,||=,
∴cos〈,〉==.
∴此時異面直線AE與BF成30°角.
②當點E為D1B1的中點,點F在B1處時,此時E,F(0,1,1),
∴=,=(0,0,1),
∴·=1,||=,
∴cos〈,〉===≠,故選D.
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練4練習卷(解析版) 題型:選擇題
已知函數(shù)y=f(x)(x∈R)的圖象如圖所示,則不等式xf′(x)<0的解集為( ).
A. ∪ B. ∪
C. ∪ D. ∪
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習7-2隨機變量及其分布練習卷(解析版) 題型:選擇題
甲射擊命中目標的概率是,乙命中目標的概率是,丙命中目標的概率是.現(xiàn)在三人同時射擊目標,則目標被擊中的概率為( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習6-1直線與圓練習卷(解析版) 題型:填空題
在平面直角坐標系xOy中,圓C的方程為x2+y2-8x+15=0,若直線y=kx-2上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,則k的最大值是________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習5-2空間向量與立體幾何練習卷(解析版) 題型:解答題
如圖,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成的角為60°.
(1)求證:AC⊥平面BDE;
(2)求二面角F-BE-D的余弦值;
(3)設點M是線段BD上一個動點,試確定點M的位置,使得AM∥平面BEF,并證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習5-1空間幾何體與點等練習卷(解析版) 題型:解答題
如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1,F分別是棱AD,AA1,AB的中點.
(1)證明:直線EE1∥平面FCC1;
(2)求二面角B-FC1-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習5-1空間幾何體與點等練習卷(解析版) 題型:選擇題
下列命題中錯誤的是( ).
A.如果平面α⊥平面β,那么平面α內(nèi)一定存在直線平行于平面β
B.如果平面α不垂直于平面β,那么平面α內(nèi)一定不存在直線垂直于平面β
C.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γ
D.如果平面α⊥平面β,那么平面α內(nèi)所有直線都垂直于平面β
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習4-1等差數(shù)列與等比數(shù)列練習卷(解析版) 題型:填空題
在等比數(shù)列{an}中,若a1=,a4=-4,則|a1|+|a2|+…+|an|=________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習2-1函數(shù)的概念與基本初等函數(shù)練習卷(解析版) 題型:選擇題
直線y=x與函數(shù)f(x)=的圖象恰有三個公共點,則實數(shù)m的取值范圍是 ( ).
A.[-1,2) B.[-1,2] C.[2,+∞) D.(-∞,-1]
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com