【題目】已知橢圓的左焦點為,右頂點為,.

(1)求的方程;

(2)過點且與軸不重合的直線交于,兩點,直線分別與直線交于,兩點,且以為直徑的圓過點.

(。┣的方程;

(ⅱ)記的面積分別為,,求的取值范圍.

【答案】(1);(2)(。;(ⅱ).

【解析】

1)根據(jù)橢圓的定義,根據(jù)條件列出方程求解即可;

2)(。┰OM,N坐標分邊為,,直線的方程為,結合橢圓方程可得BMBN方程,并得出點P、Q坐標的表達式,根據(jù)圓過點,故向量,列方程可得m的值;(ⅱ)由(。,將,的面積,轉換為、的表達式,相比可得出的取值范圍.

解:(1)依題意得,即

,解得,

∴橢圓的方程為.

2)(。┰O,直線的方程為.

,

顯然,且,,

直線方程為,直線方程為,

,得,,

∵以為直徑的圓過點,∴,

,解得(舍去),

的方程為.

(ⅱ)由(。,

,

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】隨著網(wǎng)絡的發(fā)展,網(wǎng)上購物越來越受到人們的喜愛,各大購物網(wǎng)站為增加收入,促銷策略越來越多樣化,促銷費用也不斷增加.下表是某購物網(wǎng)站2017年1-8月促銷費用(萬元)和產(chǎn)品銷量(萬件)的具體數(shù)據(jù).

1)根據(jù)數(shù)據(jù)可知具有線性相關關系,請建立關于的回歸方程(系數(shù)精確到);

2)已知6月份該購物網(wǎng)站為慶祝成立1周年,特制定獎勵制度:以(單位:件)表示日銷量, 則每位員工每日獎勵100元; 則每位員工每日獎勵150元; 則每位員工每日獎勵200元.現(xiàn)已知該網(wǎng)站6月份日銷量服從正態(tài)分布,請你計算某位員工當月獎勵金額總數(shù)大約多少元.(當月獎勵金額總數(shù)精確到百分位)

參考數(shù)據(jù) , ,其中 分別為第個月的促銷費用和產(chǎn)品銷量, .

參考公式

1)對于一組數(shù)據(jù) , , 其回歸方程的斜率和截距的最小二乘估計分別為, .

2)若隨機變量服從正態(tài)分布,, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知圓C和點,,若在圓C上存在點P,使得,則半徑r的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an} 和等比數(shù)列{bn}滿足a1b1=1,a2a4=10,b2b4a5.

(1)求{an}的通項公式;

(2)求和:b1b3b5+…+b2n-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高一、高二年級的全體學生都參加了體質健康測試,測試成績滿分為100分,規(guī)定測試成績在之間為“體質優(yōu)秀”,在之間為“體質良好”,在之間為“體質合格”,在之間為“體質不合格”現(xiàn)從兩個年級中各隨機抽取8名學生,測試成績如下:

學生編號

1

2

3

4

5

6

7

8

高一年級

60

85

55

80

65

90

90

75

高二年級

75

85

65

90

75

60

a

b

其中a,b是正整數(shù).

(1)若該校高一年級有200名學生,試估計高一年級“體質優(yōu)秀”的學生人數(shù);

(2)從高一年級抽取的學生中再隨機選取3人,求這3人中,恰有1人“體質良好”的概率;

(3)設兩個年級被抽取學生的測試成績的平均數(shù)相等,當高二年被抽取學生的測試成績的方差最小時,寫出a,b的值結論不要求證明

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求定義域,并判斷函數(shù)fx)的奇偶性;

2)若f1+f2=0,證明函數(shù)fx)在(0+∞)上的單調性,并求函數(shù)fx)在區(qū)間[14]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一元二次方程x2-mx+m2+m-1=0有兩實根x1,x2

1)求m的取值范圍;

2)求x1x2的最值;

3)如果,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中文函數(shù)function)一詞,最早由近代數(shù)學家李善蘭翻譯的之所以這么翻譯,他給出的原因是凡此變數(shù)中函彼變數(shù)者,則此為彼之函數(shù),也即函數(shù)指一個量隨著另一個量的變化而變化下列選項中兩個函數(shù)相等的是(   。

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過點A(0,1)且斜率為k的直線l與圓C(x2)2(y3)21交于M,N兩點.

(1)k的取值范圍;

(2)12,其中O為坐標原點,求|MN|.

查看答案和解析>>

同步練習冊答案