10、比較2n與n2的大小(n∈N*).
分析:比較兩數(shù)(或式)大小的常用方法本題不適用,故考慮用歸納法推測(cè)大小關(guān)系,再用數(shù)學(xué)歸納法證明.
解答:解:當(dāng)n=1時(shí),21>12,
當(dāng)n=2時(shí),22=22,當(dāng)n=3時(shí),23<32,
當(dāng)n=4時(shí),24=42,當(dāng)n=5時(shí),25>52
猜想:當(dāng)n≥5時(shí),2n>n2
下面用數(shù)學(xué)歸納法證明:
(1)當(dāng)n=5時(shí),25>52成立.
(2)假設(shè)n=k(k∈N*,k≥5)時(shí)2k>k2,
那么2k+1=2•2k=2k+2k>k2+(1+1)k>k2+Ck0+Ck1+Ckk-1=k2+2k+1=(k+1)2
∴當(dāng)n=k+1時(shí),2n>n2
由(1)(2)可知,對(duì)n≥5的一切自然數(shù)2n>n2都成立.
綜上,得當(dāng)n=1或n≥5時(shí),2n>n2;當(dāng)n=2,4時(shí),2n=n2;當(dāng)n=3時(shí),2n<n2
點(diǎn)評(píng):用數(shù)學(xué)歸納法證不等式時(shí),要恰當(dāng)?shù)販惓瞿繕?biāo)和湊出歸納假設(shè),湊目標(biāo)時(shí)可適當(dāng)放縮.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于n∈N,試比較2n與n2的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于n∈N,試比較2n與n2的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

比較2n與n2的大小(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):13.1 數(shù)學(xué)歸納法(解析版) 題型:解答題

比較2n與n2的大。╪∈N*).

查看答案和解析>>

同步練習(xí)冊(cè)答案