為防止某種疾病,今研制一種新的預(yù)防藥.任選取100只小白鼠作試驗,得到如下的2x2列聯(lián)表:
藥物效果與動物試驗2X2列聯(lián)表
 
患病
未患病
總計
服用藥
15
40
55
沒服用藥
20
25
45
總計
35
65
100
則認為“藥物對防止某種疾病有效”這一結(jié)論是錯誤的可能性約為( 。
A.0.025B.0.10C.0.01D.0.005
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)某班50名學生在一模數(shù)學考試中,成績都屬于區(qū)間[60,110]。將成績按如下方式分成五組:第一組[60,70);第二組[70,80);第三組[80,90);第四組[90,100);第五組[100,110]。部分頻率分布直方圖如圖3所示,及格(成績不小于90分)的人數(shù)為20。

(1)請補全頻率分布直方圖;
(2)在成績屬于[60,70)∪[100,110]的學生中任取
兩人,成績記為,求的概率;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分10分)
甲、乙兩隊參加環(huán)保知識競賽,每隊3人,每人回答一個問題,答對者為本隊贏得一分,答錯得零分.假設(shè)甲隊中每人答對的概率均為,乙隊中3人答對的概率分別為,且各人答題正確與否相互之間沒有影響.用表示甲隊的總得分.
(Ⅰ)求隨機變量的分布列和數(shù)學期望;                                                                       
(Ⅱ)用表示“甲、乙兩個隊總得分之和等于3”這一事件,用表示“甲隊總得分大于乙隊總得分”這一事件,求

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)某陶瓷廠準備燒制甲、乙、丙三件不同的工藝品,制作過程必須先后經(jīng)過兩次燒制,當?shù)谝淮螣坪细窈蠓娇蛇M入第二次燒作,兩次燒制過程相互獨立,根據(jù)該廠現(xiàn)有的技術(shù)水平,經(jīng)過第一次燒制后,甲、乙、丙三件產(chǎn)品合格的概率依次為0.5,0.6,0.4經(jīng)過第二次燒制后,甲、乙、丙三件產(chǎn)品合格的概率依次為0.6,0.5,0.75。
(1)求第一次燒制后恰有一件產(chǎn)品合格的概率;
(2)經(jīng)過前后兩次燒制后,合格工藝品的個數(shù)為,求隨機變量的期望。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在研究某新措施對“非典”的防治效果問題時,得到如下列聯(lián)表:
 
存活數(shù)
死亡數(shù)
合計
新措施
132
18
150
對照
114
36
150
合計
246
54
300
由表中數(shù)據(jù)可得,故我們由此認為 “新措施對防治非典有效” 的把握為(  )
A.0            B.        C.       D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13)
在一個選拔項目中,每個選手都需要進行4輪考核,每輪設(shè)有一個問題,能正確回答者進入下一輪考核,否則被淘汰,已知某選手能正確回答第一、二、三、四輪問題的概率分別為、,且各輪問題能否正確回答互不影響。
(I)求該選手進入第三輪才被淘汰的概率;
(II)求該選手至多進入第三輪考核的概率;
(III)該選手在選拔過程中回答過的問題的個數(shù)記為,求隨機變量的分布列和期望。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某人拋擲一枚質(zhì)量分布均勻的骰子,出現(xiàn)各數(shù)的概率都是,構(gòu)造數(shù)列,使
               ,記
(Ⅰ)求時的概率;
(Ⅱ)求前兩次均為奇數(shù)且的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

.連續(xù)拋擲兩次骰子得到的點數(shù)分別為則向量的夾角為直角的概率是          。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋擲一枚質(zhì)地均勻的骰子,所得點數(shù)的樣本空間為.令事件,事件,則的值為(  )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案