設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)l使得對(duì)于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱(chēng)f(x)為M上的l高調(diào)函數(shù).

(1)如果定義域?yàn)閇-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),求實(shí)數(shù)m的取值范圍.

(2)如果定義域?yàn)镽的函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時(shí),f(x)=|x-a2|-a2,且f(x)為R上的4高調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

(1)f(x)=x2(x≥-1)的圖象如圖(1)所示,要使得f(-1+m)≥f(-1),有m≥2;x≥-1時(shí),恒有f(x+2)≥f(x),故m≥2即可.所以實(shí)數(shù)m的取值范圍為[2,+∞);

(2)由f(x)為奇函數(shù)及x≥0時(shí)的解析式知f(x)的圖象如圖(2)所示,

∵f(3a2)=a2=f(-a2),

由f(-a2+4)≥f(-a2)=a2=f(3a2),

故-a2+4≥3a2,從而a2≤1,

又a2≤1時(shí),恒有f(x+4)≥f(x),故a2≤1即可.

所以實(shí)數(shù)a的取值范圍為[-1,1].

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年?yáng)|城區(qū)示范校質(zhì)檢一理)(14分)

設(shè)函數(shù)f(x)是定義在上的奇函數(shù),當(dāng)時(shí), (a為實(shí)數(shù)).

   (Ⅰ)求當(dāng)時(shí),f(x)的解析式;

   (Ⅱ)若上是增函數(shù),求a的取值范圍;

   (Ⅲ)是否存在a,使得當(dāng)時(shí),f(x)有最大值-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),若當(dāng)x∈(0,+∞)時(shí),f(x)=lgx,則滿(mǎn)足f(x)>0的x的取值范圍是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),并且f(x+2)=-f(x),當(dāng)0≤x≤1時(shí),有f(x)=x,則f(3.5)=____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是定義在R上的周期為2的偶函數(shù),當(dāng)x∈[0,1]時(shí),f(x)=x+1,則f()=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008年普通高等學(xué)校招生全國(guó)統(tǒng)一考試?yán)砜茢?shù)學(xué)(上海卷) 題型:填空題

設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),若當(dāng)x∈(0,+∞)時(shí),f(x)=lg x,則滿(mǎn)足f(x)>0

x的取值范圍是                  .

 

查看答案和解析>>

同步練習(xí)冊(cè)答案