精英家教網 > 高中數學 > 題目詳情
(2008•湖北模擬)如圖,直二面角E-AB-C中,四邊形ABEF是矩形,AB=2,AF=2
3
,△ABC是以A為直角頂點的等腰直角三角形,點P是線段BF上的一個動點.
(1)若PB=PF,求異面直線PC與AB所成的角的余弦值;
(2)若二面角P-AC-B的大小為300,求證:FB⊥平面PAC.
分析:(1)分別取BE、AB的中點M、N,連接PM、MC,PN、NC,則PM=1,MB=
3
,BC=2
2
,可得MC=
11
,又因為PN=MB=
3
,NC=
5
,可得PC=2
2
.進而利用余弦定理求出答案.
(2)連接AP,根據題意可得:∠BAP即為所求二面角的平面角,即∠BAP=30°,進而根據三角形的有關知識可得BF⊥AP,再結合線面垂直可得BF⊥AC,進而根據線面垂直的判定定理證明線面垂直.
解答:解:(1)分別取BE、AB的中點M、N,
連接PM、MC,PN、NC,則PM=1,MB=
3
,BC=2
2
,
∴MC=
11
,而PN=MB=
3
,NC=
5
,
∴PC=2
2
,…(4分)
∴在△MPC中,由余弦定理可得:cos∠MPC=
1+8-11
4
2
=-
2
4

故所求PC與AB所成角的余弦值為
2
4
…(6分)
(2)連接AP,
∵二面角E-AB-C是直二面角,且AC⊥AB
∴∠BAP即為所求二面角的平面角,即∠BAP=30°…(8分)
在Rt△BAF中,tan∠ABF=
3
,
∴∠ABF=60°,
故BF⊥AP,…(10分)
又∵AC⊥面BF,
∴BF⊥AC,
又因為AP∩AC=A,并且AP?平面PAC,AC?平面PAC,
所以BF⊥平面PAC…(12分)
點評:本題考查利用線面垂直的判定定理證明線面垂直,以及求異面直線所成的角,空間角解決的關鍵是做角,由圖形的結構及題設條件正確作出平面角來,是求角的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2008•湖北模擬)若等比數列的各項均為正數,前n項之和為S,前n項之積為P,前n項倒數之和為M,則( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•湖北模擬)已知f(x)=ax3+bx2+cx+d為奇函數,且在點(2,f(2))處的切線方程為9x-y-16=0.
(1)求f(x)的解析式;
(2)若y=f(x)+m的圖象與x軸僅有一個公共點,求m的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•湖北模擬)某工廠去年某產品的年產量為100萬只,每只產品的銷售價為10元,固定成本為8元.今年,工廠第一次投入100萬元(科技成本),并計劃以后每年比上一年多投入100萬元(科技成本),預計產量年遞增10萬只,第n次投入后,每只產品的固定成本為g(n)=
k
n+1
(k>0,k為常數,n∈Z且n≥0),若產品銷售價保持不變,第n次投入后的年利潤為f(n)萬元.
(1)求k的值,并求出f(n)的表達式;
(2)問從今年算起第幾年利潤最高?最高利潤為多少萬元?

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•湖北模擬)已知向量
a
=(1,2),向量
b
=(x,-2),且
a
∥(
a
-
b
)
,則實數x等于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•湖北模擬)已知向量
a
=(2cosx,tan(x+α))
,
b
=(
2
sin(x+α),tan(x-α))
,已知角α(α∈(-
π
2
π
2
))
的終邊上一點P(-t,-t)(t≠0),記f(x)=
a
b

(1)求函數f(x)的最大值,最小正周期;
(2)作出函數f(x)在區(qū)間[0,π]上的圖象.

查看答案和解析>>

同步練習冊答案