【題目】甲、乙兩人進行圍棋比賽,約定每局勝者得1分,負者得0分,比賽進行到有一人比對方多2分或打滿8局時停止.設(shè)甲在每局中獲勝的概率為,且各局勝負相互獨立.已知第二局比賽結(jié)束時比賽停止的概率為.

(1)求的值;

(2)設(shè)表示比賽停止時已比賽的局數(shù),求隨機變量的分布列和數(shù)學期望.

【答案】(1);(2).

【解析】試題分析:(1)由題意可知,當甲連勝局或乙連勝局時,第二局比賽結(jié)束時比賽停止,再由互斥事件的概率及相互獨立事件的概率列方程求的值;(2)隨機變量的的可能取值為,根據(jù)對立事件與獨立事件的概率公式求出各隨機變量對應的概率,從而可得分布列,進而利用期望公式可得的數(shù)學期望..

試題解析:(1)依題意,當甲連勝2局或乙連勝2局時,第二局比賽結(jié)束時比賽結(jié)束,

, 解得 .

(2)依題意知,的所有可能值為 ,

設(shè)每兩局比賽為一輪,則該輪結(jié)束時比賽停止的概率為,若該輪結(jié)束時比賽還將繼續(xù),則甲、乙在該輪中必是各得一分,此時,該輪比賽結(jié)果對下輪比賽是否停止沒有影響

從而有

,

隨機變量的分布列為:

2

4

6

8

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】過雙曲線的右焦點作一條直線,直線與雙曲線相交于兩點,且,若有且僅有三條直線,則雙曲線離心率的取值范圍為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2016年某學科能力測試共有12萬考生參加,成績采用15級分,測試成績分布圖如圖,試估計成績高于11級分的人數(shù)為 (  )

A. 8 000 B. 10 000 C. 20 000 D. 60 000

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是甲、乙兩名運動員某賽季一些場次得分的莖葉圖,據(jù)圖可知以下說法正確的是 _____.(填序號)

①甲運動員的成績好于乙運動員;②乙運動員的成績好于甲運動員;

③甲、乙兩名運動員的成績沒有明顯的差異;④甲運動員的最低得分為0分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)m, n是兩條不同的直線,是三個不同的平面, 給出下列四個命題:

m⊥α,n∥α,m⊥n;; α∥β, β∥r, m⊥α,m⊥r;

m∥α,n∥α,m∥n;α⊥r, β⊥r,α∥β

其中正確命題的序號是 ( )

A. B. ②③ C. ③④ D. ①

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017年“十一”期間,高速公路車輛較多.某調(diào)查公司在一服務區(qū)從七座以下小型汽車中按進服務區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進行詢問調(diào)查,將他們在某段高速公路的車速()分成六段: , , , , ,后得到如圖的頻率分布直方圖.

(1)求這40輛小型車輛車速的眾數(shù)和中位數(shù)的估計值;

(2)若從車速在的車輛中任抽取2輛,求車速在的車輛恰有一輛的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=cosx(x∈(0,2π))有兩個不同的零點x1、x2 , 方程f(x)=m有兩個不同的實根x3、x4 . 若把這四個數(shù)按從小到大排列構(gòu)成等差數(shù)列,則實數(shù)m的值為(
A.
B.
C.
D.-

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三棱錐P-ABC中,PC平面ABC,PC=AC=2AB=BC,DPB上一點,且CD平面PAB

(1)求證:AB平面PCB

(2)求異面直線APBC所成角的大小

(3)求二面角C-PA-B 的大小的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某海域的東西方向上分別有A,B兩個觀測點(如圖),它們相距海里.現(xiàn)有一艘輪船在D點發(fā)出求救信號,經(jīng)探測得知D點位于A點北偏東45°,B點北偏西60°,這時,位于B點南偏西60°且與B點相距海里的C點有一救援船,其航行速度為30海里/小時.

(1)求B點到D點的距離BD;

(2)若命令C處的救援船立即前往D點營救,求該救援船到達D點需要的時間.

查看答案和解析>>

同步練習冊答案