如圖,在正三棱柱ABC-A1B1C1中,BB1=BC=2,M是BC中點,點N在CC1上.
(1)試確定點N的位置,使AB1⊥MN;
(2)當(dāng)AB1⊥MN時,求二面角M-AB1-N的大。
解法一:(1)連結(jié)MA,過M作MN⊥B1M交CC1于點N.
在正△ABC中,AM⊥BC,又平面ABC⊥平面BC1,
∴AM⊥平面BC1
又MN平面BC1 ∴MN⊥AM
又XMN⊥B1M ∴MN⊥平面AMB1.
∴MN⊥AB1
在Rt△B1BM與Rt△MCN中,易知∠NMC=∠BB1M
∴tan∠NMC=NC=tan∠B1BM=
即NC=
(2)過點M作ME⊥AB1,垂足為E,連接EN由(1)知MN⊥平面AMB1
∴EN⊥AB1(三垂線定理)
∴∠MEN即為二面角M-AB1-N的平面角
由AM⊥平面BC1,知AM⊥B1M
在Rt△AMB1中,
AM=,B1M=,AB1=2
∴ME=,
又MN=
故在Rt△EMN中,
tan∠MEN=
故二面角M-ABl-N的大小為arctan
解法二:(1)以點M為原點,建立如圖所示空間直角坐標(biāo)系,
則:M(0,0,0),B(1,0,0),A(0,-,0),B1(1,0,2)令N(-1,0,z)
∴=(1,,2),=(-1,0,z)
由AB1⊥MN,知·=-1+2z=0
∴z=,即NC=
(2)∵AM⊥BC,平面ABC⊥平面B1BCC1
∴AM⊥平面B1BCC1
∴AM⊥MN,又MN⊥AB1 ∴MN⊥平面AMB1
即為平面AB1M的法向量,
且=(-1,0,)(8分)
設(shè)平面AB1N的法向量為n=(x,y,1),
且=(1,,2),=(-1,)
有∴
∴ n=(,1)
∴·n=
而||= |n|=∴cosθ=
故二面角M-AB1-N的大小為arcos.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、
| ||||
C、
| ||||
D、1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com