直三棱柱 ABC-A1B1C1 中,若
CA
=
a
,
CB
=
b
CC1
=
c
,則
A1B
=
-
a
-
c
+
b
-
a
-
c
+
b
分析:由向量加法的三角形法則,得到
A1B
=
A1C
+
CB
,再由向量加法的三角形法則,
A1C
=
A1C1
+
C1C
,最后利用相反向量即得到結(jié)論.
解答:解:向量加法的三角形法則,得到
A1B
=
A1C
+
CB
=
A1C1
+
C1C
+
CB
=-
CA
-
CC1
+
CB
=-
a
-
c
+
b

故答案為:-
a
-
c
+
b
點評:本題考查的知識點是向量的三角形法則,要將未知向量用已知向量表示,關(guān)鍵是要根據(jù)向量加減法及其幾何意義,將未知的向量分解為已知向量.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直三棱柱ABC-A′B′C′的側(cè)棱AA′=4,底面三角形ABC中,AC=BC=2,∠ACB=90°,D是AB的中點.
(Ⅰ)求證:CD⊥AB′;
(Ⅱ)求二面角A′-AB′-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直三棱柱ABC-A′B′C′中,已知AA′=4,AC=BC=2,∠ACB=90°,D是AB的中點.
(Ⅰ)求證:CD⊥AB′;
(Ⅱ)求二面角A′-AB′-C的大小;
(Ⅲ)求直線B′D與平面AB′C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•遼寧)如圖,直三棱柱ABC-A'B'C',∠BAC=90°,AB=AC=λAA',點M,N分別為A'B和B'C'的中點.
(I)證明:MN∥平面A'ACC';
(II)若二面角A'-MN-C為直二面角,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•瀘州一模)如圖,在直三棱柱ABC-A′B′C′中,AB=BC=CA=a,AA′=
2
a
,則AB′與側(cè)面AC′所成角的大小為
30°
30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=BB′=1,直線B′C與平面ABC成30°角.
(1)求證:A′B⊥面AB′C;
(2)求二面角B-B′C-A的正弦值.

查看答案和解析>>

同步練習(xí)冊答案