【題目】橢圓的焦距是,長軸長是短軸長3倍,任作斜率為的直線與橢圓交于兩點(如圖所示),且點在直線的左上方.
(1)求橢圓的方程;
(2)若,求的面積;
(3)證明:的內(nèi)切圓的圓心在一條定直線上。
【答案】(1)
(2)
(3)的內(nèi)切圓的圓心在一條定直線上
【解析】
(1)由題意求出橢圓方程中的,得解;
(2)分別利用弦長公式及點到直線的距離公式求出三角形的底與高,再利用三角形面積公式求解即可;
(3)先證明,從而可得的角平分線平行軸,從而可證的內(nèi)切圓的圓心在一條定直線上.
解:(1)由題意知:,得,又,
所以,
故橢圓的方程為:;
(2)設(shè)直線的方程為:,代入橢圓方程可得:,
設(shè),,則,
所以 ,
又,解得或,
由題意可得,
故所在直線方程為,即,
所以點到直線的距離,
故的面積為;
(3)設(shè)直線的方程為:,代入橢圓方程可得:,
設(shè),,則,
所以=,
又
,
即 ,所以的角平分線平行軸,
故的內(nèi)切圓的圓心在一條定直線上.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價格依次為60元/盒、65元/盒、80元/盒、90元/盒.為增加銷量,李明對這四種水果進行促銷:一次購買水果的總價達到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會得到支付款的80%.
①當x=10時,顧客一次購買草莓和西瓜各1盒,需要支付__________元;
②在促銷活動中,為保證李明每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,點在第一象限,以為直徑的圓與軸相切,動點的軌跡為曲線.
(1)求曲線的方程;
(2)若曲線在點處的切線的斜率為,直線的斜率為,求滿足的點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接“五一”節(jié)的到來,某單位舉行“慶五一,展風(fēng)采”的活動.現(xiàn)有6人參加其中的一個節(jié)目,該節(jié)目由兩個環(huán)節(jié)可供參加者選擇,為增加趣味性,該單位用電腦制作了一個選擇方案:按下電腦鍵盤“Enter”鍵則會出現(xiàn)模擬拋兩枚質(zhì)地均勻骰子的畫面,若干秒后在屏幕上出現(xiàn)兩個點數(shù)和,并在屏幕的下方計算出的值.現(xiàn)規(guī)定:每個人去按“Enter”鍵,當顯示出來的小于時則參加環(huán)節(jié),否則參加環(huán)節(jié).
(1)求這6人中恰有2人參加該節(jié)目環(huán)節(jié)的概率;
(2)用分別表示這6個人中去參加該節(jié)目兩個環(huán)節(jié)的人數(shù),記,求隨機變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接國慶匯演,學(xué)校擬對參演的班級進行獎勵性加分表彰,每選中一個節(jié)目,其班級量化考核積分加3分.某班級準備了三個文娛節(jié)目,這三個節(jié)目被選中的概率分別為,,,且每個節(jié)目是否被選中是相互獨立的.
(1)求該班級被加分的概率;
(2)求該班級獲得獎勵性積分的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場為改進服務(wù)質(zhì)量,在進場購物的顧客中隨機抽取了人進行問卷調(diào)查.調(diào)查后,就顧客“購物體驗”的滿意度統(tǒng)計如下:
滿意 | 不滿意 | |
男 | ||
女 |
是否有的把握認為顧客購物體驗的滿意度與性別有關(guān)?
若在購物體驗滿意的問卷顧客中按照性別分層抽取了人發(fā)放價值元的購物券.若在獲得了元購物券的人中隨機抽取人贈其紀念品,求獲得紀念品的人中僅有人是女顧客的概率.
附表及公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四種說法:
①命題“,”的否定是“,”;
②若不等式的解集為,則不等式的解集為;
③對于,恒成立,則實數(shù)a的取值范圍是;
④已知p:,q:(),若p是q的充分不必要條件,則實數(shù)a的取值范圍是
正確的有________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解所經(jīng)銷商品的使用情況,隨機問卷50名使用者,然后根據(jù)這50名的問卷評分數(shù)據(jù),統(tǒng)計得到如圖所示的頻率布直方圖,其統(tǒng)計數(shù)據(jù)分組區(qū)間為[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求頻率分布直方圖中a的值并估計這50名使用者問卷評分數(shù)據(jù)的中位數(shù);
(2)從評分在[40,60)的問卷者中,隨機抽取2人,求此2人評分都在[50,60)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】綠色已成為當今世界主題,綠色動力已成為時代的驅(qū)動力,綠色能源是未來新能源行業(yè)的主導(dǎo).某汽車公司順應(yīng)時代潮流,最新研發(fā)了一款新能源汽車,并在出廠前對100輛汽車進行了單次最大續(xù)航里程(理論上是指新能源汽車所裝載的燃料或電池所能夠提供給車行駛的最遠里程)的測試.現(xiàn)對測試數(shù)據(jù)進行分析,得到如圖所示的頻率分布直方圖.
(1)估計這100輛汽車的單次最大續(xù)航里程的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);
(2)根據(jù)大量的汽車測試數(shù)據(jù),可以認為這款汽車的單次最大續(xù)航里程近似地服從正態(tài)分布,經(jīng)計算第(1)問中樣本標準差的近似值為50.用樣本平均數(shù)作為的近似值,用樣本標準差作為的估計值;
(。┈F(xiàn)從該汽車公司最新研發(fā)的新能源汽車中任取一輛汽車,求它的單次最大續(xù)航里程恰好在200千米到350千米之間的概率;
(ⅱ)從該汽車公司最新研發(fā)的新能源汽車中隨機抽取10輛,設(shè)這10輛汽車中單次最大續(xù)航里程恰好在200千米到350千米之間的數(shù)量為,求;
(3)某汽車銷售公司為推廣此款新能源汽車,現(xiàn)面向意向客戶推出“玩游戲,送大獎”活動,客戶可根據(jù)拋擲硬幣的結(jié)果,操控微型遙控車在方格圖上行進,若遙控車最終停在“勝利大本營”,則可獲得購車優(yōu)惠券.已知硬幣出現(xiàn)正、反面的概率都是,方格圖上標有第0格、第1格、第2格、…、第50格.遙控車開始在第0格,客戶每擲一次硬幣,遙控車向前移動一次,若擲出正面,遙控車向前移動一格(從到),若擲出反面,遙控車向前移動兩格(從到),直到遙控車移到第49格(勝利大本營)或第50格(失敗大本營)時,游戲結(jié)束.設(shè)遙控車移到第格的概率為,其中,試說明是等比數(shù)列,并解釋此方案能否成功吸引顧客購買該款新能源汽車.
參考數(shù)據(jù):若隨機變量服從正態(tài)分布,則,,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com