【題目】已知直線x﹣9y﹣8=0與曲線C:y=x3﹣px2+3x相交于A,B,且曲線C在A,B處的切線平行,則實(shí)數(shù)p的值為(
A.4
B.4或﹣3
C.﹣3或﹣1
D.﹣3

【答案】B
【解析】解:由y=x3﹣px2+3x,得y′=3x2﹣2px+3,
設(shè)A(x1 , y1),B(x2 , y2),
則曲線C在A,B處的切線的斜率分別為3x12﹣2px1+3,
3x22﹣2px2+3,
∵曲線C在A,B處的切線平行,
∴3x12﹣2px1+3=3x22﹣2px2+3,
令3x12﹣2px1+3=3x22﹣2px2+3=m,
∴x1 , x2是方程3x2﹣2px+3﹣m=0的兩個(gè)根,
則x1+x2= p,
下面證線段AB的中點(diǎn)在曲線C上,

=
= =p﹣ p3 ,
而( 3﹣p( 2+3 = p3 p3+p
=p﹣ p3
∴線段AB的中點(diǎn)在曲線C上,
由x1+x2= p,知線段的中點(diǎn)為( p, p﹣8)),
∴﹣ + p=p﹣ p3 , 解得p=﹣1,﹣3或4.
當(dāng)p=﹣1時(shí),y=x3+x2+3x的導(dǎo)數(shù)為y′=3x2+2x+3>0恒成立,
即函數(shù)為遞增函數(shù),直線與曲線只有一個(gè)交點(diǎn),舍去;
p=﹣3,或4時(shí),y=x3﹣px2+3x不單調(diào),成立.
故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高一、高二、高三人數(shù)分別是400人、350人、350人.為調(diào)査該校學(xué)習(xí)情況,采用分層抽樣的方法從中抽取一個(gè)容量為的樣本.已知從高一的同學(xué)中抽取的同學(xué)有8人

(1)求樣本容量的值和高二抽取的同學(xué)的人數(shù)

(2)若從高二抽取的同學(xué)中選出2人參加某活動(dòng),已知高二被抽取的同學(xué)中有2名女生,求至少有1名女同學(xué)被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出的i的值為8,則判斷框內(nèi)實(shí)數(shù)a的取值范圍是 . (寫成區(qū)間或集合的形式)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;

2)當(dāng)時(shí),的最大值為2,求的值,并求出的對(duì)稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)為A(﹣3,0),B(2,1),C(﹣2,3),求:
(Ⅰ)BC邊上高線AH所在直線的方程;
(Ⅱ)若直線l過(guò)點(diǎn)B且橫、縱截距互為相反數(shù),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)f(x)給出定義:
設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是函數(shù)f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0 , 則稱點(diǎn)(x0 , f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.
某同學(xué)經(jīng)過(guò)探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱中心,且“拐點(diǎn)”就是對(duì)稱中心.給定函數(shù) ,請(qǐng)你根據(jù)上面探究結(jié)果,計(jì)算
=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓中心在原點(diǎn),焦點(diǎn)在軸上, 分別為上、下焦點(diǎn),橢圓的離心率為, 為橢圓上一點(diǎn)且

(1)若的面積為,求橢圓的標(biāo)準(zhǔn)方程;

(2)若的延長(zhǎng)線與橢圓另一交點(diǎn)為,以為直徑的圓過(guò)點(diǎn), 為橢圓上動(dòng)點(diǎn),求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣(2m+1)x+2m(m∈R).
(1)當(dāng)m=1時(shí),解關(guān)于x的不等式xf(x)≤0;
(2)解關(guān)于x的不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個(gè)銷售季度內(nèi),每售出該產(chǎn)品獲利潤(rùn)500元,未售出的產(chǎn)品,每虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場(chǎng)需求量的頻率分布直方圖,如圖所示.經(jīng)銷商為下一個(gè)銷售季度購(gòu)進(jìn)了該農(nóng)產(chǎn)品.以 (單位: )表示下一個(gè)銷售季度內(nèi)的市場(chǎng)需求量, (單位:元)表示下一個(gè)銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤(rùn).

(1)將表示為的函數(shù);

(2)根據(jù)直方圖估計(jì)利潤(rùn)不少于57000元的概率;

(3)在直方圖的需求量分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點(diǎn)值的概率(例如:若需求量,則取,且的概率等于需求量落入的頻率),求的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案