【題目】1766年;人類已經(jīng)發(fā)現(xiàn)的太陽系中的行星有金星、地球、火星、木星和土星.德國的一位中學教師戴維一提丟斯在研究了各行星離太陽的距離(單位:AUAU是天文學中計量天體之間距離的一種單位)的排列規(guī)律后,預(yù)測在火星和木星之間應(yīng)該還有一顆未被發(fā)現(xiàn)的行星存在,并按離太陽的距離從小到大列出了如下表所示的數(shù)據(jù):

行星編號(x

1(金星)

2(地球)

3(火星)

4

5(木星)

6(土星)

離太陽的距離(y

0.7

1.0

1.6

5.2

10.0

受他的啟發(fā),意大利天文學家皮亞齊于1801年終于發(fā)現(xiàn)了位于火星和木星之間的谷神星.

1)為了描述行星離太陽的距離y與行星編號之間的關(guān)系,根據(jù)表中已有的數(shù)據(jù)畫出散點圖,并根據(jù)散點圖的分布狀況,從以下三種模型中選出你認為最符合實際的一種函數(shù)模型(直接給出結(jié)論即可);

;②;③.

2)根據(jù)你的選擇,依表中前幾組數(shù)據(jù)求出函數(shù)解析式,并用剩下的數(shù)據(jù)檢驗?zāi)P偷奈呛锨闆r;

3)請用你求得的模型,計算谷神星離太陽的距離.

【答案】1)模型②符合題意(2)見解析(3

【解析】

1)畫出散點圖,根據(jù)圖形得到答案.

2)將分別代入得到解析式,再驗證得到答案.

3)取,代入計算得到答案.

1)散點圖如圖所示:根據(jù)散點圖可知,模型②符合題意

2)將分別代入,

解得,所以

時,.

時,.

與已知表中數(shù)據(jù)完全吻合.

3)當時,,即谷神星距太陽的距離為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,過拋物線y22px(p0)的焦點F的直線交拋物線于點AB,交其準線l于點C,若|BC|2|BF|,且|AF|3,則此拋物線的方程為(  )

A.y29xB.y26x

C.y23xD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,,的中點.

(1)證明:平面;

(2)若點在棱上,且,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校高三有名學生,按性別分層抽樣從高三學生中抽取名男生,名女生期未某學科的考試成績,得到如下所示男生成績的頻率分布直方圖和女生成績的莖葉圖.

(1)試計算男生考試成績的平均分與女生考試成績的中位數(shù)(每組數(shù)據(jù)取區(qū)間的中點值);

(2)根據(jù)頻率分布直方圖可以認為,男生這次考試的成績服從正態(tài)分布,試計算男生成績落在區(qū)間內(nèi)的概率及全?荚嚦煽冊內(nèi)的男生的人數(shù)(結(jié)果保留整數(shù));

(3)若從抽取的名學生中考試成績優(yōu)勢(分以上包括分)的學生中再選取名學生,作學習經(jīng)驗交流,記抽取的男生人數(shù)為,求的分布列與數(shù)學期望.

參考數(shù)據(jù),若,則,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,軸上的點.

(1)過點作直線相切,求切線的方程;

(2)如果存在過點的直線與拋物線交于,兩點,且直線的傾斜角互補,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知不共面的直線a,bc相交于O,MP是直線a上兩點,NQ分別是直線b,c上一點.求證:MNPQ是異面直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,EPA的中點,FBC的中點,底面ABCD是菱形,對角線AC,BD交于點O.求證:

(1)平面EFO∥平面PCD;

(2)平面PAC⊥平面PBD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐PABCD中,底面ABCD為矩形,平面PAB⊥平面ABCDABAP=3,ADPB=2,E為線段AB上一點,且AEEB=7︰2,點FG分別為線段PA、PD的中點.

(1)求證:PE⊥平面ABCD;

(2)若平面EFG將四棱錐PABCD分成左右兩部分,求這兩部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當 時,求曲線 在點 處的切線方程;

(2)求 的單調(diào)區(qū)間.

查看答案和解析>>

同步練習冊答案