如果函數(shù)f(x)=x2+2(a-1)x+2在區(qū)間[2,+∞)上單調(diào)遞增,那么實(shí)數(shù)a的取值范圍是( 。
A、a≥-1B、a≤-1
C、a≥3D、a≤3
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用二次函數(shù)對稱軸和單調(diào)區(qū)間之間的關(guān)系,建立關(guān)系,即可求出實(shí)數(shù)a的取值范圍.
解答: 解:∵函數(shù)f(x)的對稱軸為x=-
2(a-1)
2
=1-a
,拋物線的開口方向向上,
∴要使函數(shù)f(x)=x2+2(a-1)x+2在區(qū)間[2,+∞)上單調(diào)遞增,
則1-a≤2,
即a≥-1,
故選:A.
點(diǎn)評:本題主要考查二次函數(shù)的圖象和性質(zhì),利用對稱軸和函數(shù)單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線l1:a1x+b1y+1=0直線l2:a2x+b2y+1=0交于一點(diǎn)(2,3),則經(jīng)過A(a1,b1),B(a2,b2)兩點(diǎn)的直線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前項(xiàng)和Sn=2n2+3n-1,求該數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x萬件,需另投入的成本為C(x)(單位:萬元),當(dāng)年產(chǎn)量小于80萬件時(shí),C(x)=
1
3
x2+10x;當(dāng)年產(chǎn)量不小于80萬件時(shí),C(x)=51x+
10000
x
-1450.假設(shè)每萬件該產(chǎn)品的售價(jià)為50萬元,且該廠當(dāng)年生產(chǎn)的該產(chǎn)品能全部銷售完.
(1)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(萬件)的函數(shù)關(guān)系式;
(2)年產(chǎn)量為多少萬件時(shí),該廠在該產(chǎn)品的生產(chǎn)中所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(2,2),B(5,-2),點(diǎn)P在x軸上且∠APB為直角,則點(diǎn)P的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費(fèi)用y(萬元),有如下的統(tǒng)計(jì)資料:
x 2 3 4 5 6
y 2.2 3.8 5.5 6.5 7.0
由資料可知y對x呈線性相關(guān)關(guān)系,且線性回歸方程為
?
y
=bx+a
,其中已知b=1.23,請估計(jì)使用年限為20年時(shí),維修費(fèi)用約為(  )
A、26.75
B、24.68
C、23.52
D、22.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=4與直線l:y=x+b,在x軸上有點(diǎn)P(3,0),
(1)當(dāng)實(shí)數(shù)b變化時(shí),討論圓O上到直線l的距離為2的點(diǎn)的個(gè)數(shù);
(2)若圓O與直線l交于不同的兩點(diǎn)A,B,且△APB的面積S=
9
2
tan∠APB
,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)對任意a,b∈R都有f(a+b)=f(a)+f(b)+k(k為常數(shù)).
(I)判斷k為何值時(shí),f(x)為奇函數(shù),并證明;
(II)設(shè)k=-1,f(x)是R上的增函數(shù),且f(4)=5,若不等式f(mx2-2mx+3)>3對任意x∈R恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,Sn=2an-2.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=an•log2an+1,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案