已知圓C經(jīng)過點(diǎn)A(-1,0)和B(3,0),且圓心在直線x-y=0上.
(1)求圓C的方程;
(2)若點(diǎn)P(x,y)為圓C上任意一點(diǎn),求點(diǎn)P到直線x+2y+4=0的距離的最大值和最小值.
分析:(1)確定圓心坐標(biāo)與半徑,可求圓C的方程;
(2)點(diǎn)P到直線x+2y+4=0的距離轉(zhuǎn)化為圓心到直線x+2y+4=0的距離問題.
解答:解:(1)AB的中點(diǎn)坐標(biāo)為(1,0),
∴圓心在直線x=1上,…(1分)
又知圓心在直線x-y=0上,
∴圓心坐標(biāo)是(1,1),圓心半徑是r=
5
,…(4分)
∴圓方程是(x-1)2+(y-1)2=5;…(7分)
(2)設(shè)圓心到直線x+2y+4=0的距離d=
|1+2+4|
5
=
7
5
5
5
,
∴直線x+2y+4=0與圓C相離,…(9分)
∴點(diǎn)P到直線x+2y+4=0的距離的最大值是
7
5
5
+
5
=
12
5
5
,…(12分)
最小值是
7
5
5
-
5
=
2
5
5
.…(15分)
點(diǎn)評(píng):本題考查圓的方程,考查直線與圓的位置關(guān)系,考查學(xué)生的轉(zhuǎn)化能力,正確轉(zhuǎn)化是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C經(jīng)過點(diǎn)A(1,3)、B(2,2),并且直線l:3x-2y=0平分圓C,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C經(jīng)過點(diǎn)A(1,2)、B(3,0),并且直線m:2x-3y=0平分圓C.
(1)求圓C的方程;
(2)過點(diǎn)D(0,3),且斜率為k的直線l與圓C有兩個(gè)不同的交點(diǎn)E、F,若|EF|≥2
3
,求k的取值范圍;
(3)若圓C關(guān)于點(diǎn)(
3
2
,1)
對(duì)稱的曲線為圓Q,設(shè)M(x1,y1)、P(x2,y2)(x1≠±x2)是圓Q上的兩個(gè)動(dòng)點(diǎn),點(diǎn)M關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為M1,點(diǎn)M關(guān)于x軸的對(duì)稱點(diǎn)為M2,如果直線PM1、PM2與y軸分別交于(0,m)和(0,n),問m•n是否為定值?若是求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C經(jīng)過點(diǎn)A(1,-1),B(-2,0),C(
5
,1)直線l:mx-y+1-m=0
(1)求圓C的方程;
(2)求證:?m∈R,直線l與圓C總有兩個(gè)不同的交點(diǎn);
(3)若直線l與圓C交于M、N兩點(diǎn),當(dāng)|MN|=
17
時(shí),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C經(jīng)過點(diǎn)A(0,3)和B(3,2),且圓心C在直線y=x上.
(Ⅰ) 求圓C的方程;
(Ⅱ)若直線y=2x+m被圓C所截得的弦長(zhǎng)為4,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C經(jīng)過點(diǎn)A(5,1),B(1,3)兩點(diǎn),圓心在x軸上,則C的方程是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案