【題目】已知曲線的方程為 為常數(shù)).

(1)判斷曲線的形狀;

(2)設曲線分別與軸, 軸交于點, , 不同于原點),試判斷的面積是否為定值?并證明你的判斷;

(3)設直線 與曲線交于不同的兩點, ,且,求的值.

【答案】(1)以點為圓心,以為半徑的圓.(2)答案見解析;(3) .

【解析】試題分析:(1)將原式子化簡配方,得到,可知曲線是圓;(2)因為這個三角形是直角三角形,三角形面積是底乘高,直接求出曲線和坐標軸的交點即可。(3)首先向量坐標化,得到,聯(lián)立直線和曲線得到二次方程,根據(jù)韋達定理得,求出即可。

解析:

(1)將曲線的方程化為,整理得,

可知曲線是以點為圓心,以為半徑的圓.

(2)的面積為定值.

證明如下:在曲線的方程中令,得,得

在曲線方程中令,得,得,

所以(定值).

(3)直線與曲線方程聯(lián)立得,

,則

,

,

,即,解得,

時,滿足;當時,滿足.

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知等腰梯形中(如圖1),, 為線段的中點, 為線段上的點, ,現(xiàn)將四邊形沿折起(如圖2).

圖1 圖2

⑴求證: 平面;

⑵在圖2中,若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“微信運動”已成為當下熱門的健身方式,小王的微信朋友圈內也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

(1)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認為“評定類型”與“性別”有關?

附: ,

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

(2)若小王以這40位好友該日走路步數(shù)的頻率分布來估計其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有人,超過10000步的有人,設,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修44:極坐標與參數(shù)方程

已知在平面直角坐標系xOy,O為坐標原點曲線C (α為參數(shù)),在以平面直角坐標系的原點為極點,x軸的正半軸為極軸,取相同單位長度的極坐標系直線lρ.

()求曲線C的普通方程和直線l的直角坐標方程;

()曲線C上恰好存在三個不同的點到直線l的距離相等分別求出這三個點的極坐標

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲乙兩個學校高三年級分別有1100人,1000人,為了了解兩個學校全體高三年級學生在該地區(qū)二模考試的數(shù)學成績清況,采用分層抽樣方法從兩個學校一共抽取了105名學生的數(shù)學成績,并作出了頻數(shù)分布統(tǒng)計表如下:

甲校:

乙校:

(1)計算的值;

(2)若規(guī)定考試成績在內為優(yōu)秀,請根據(jù)樣本估計乙校數(shù)學成績的優(yōu)秀率;

(3)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有的把握認為兩個學校的數(shù)學成績有差異.

附: ; .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4一5:不等式選講.

已知函數(shù).

(1)求的解集;

(2)設函數(shù),若對任意的都成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖(1)等腰直角三角形ABC的底邊AB4,D在線段AC,DEABE,現(xiàn)將△ADE沿DE折起到△PDE的位置(如圖(2))

(1)求證PBDE;

(2)PEBE,PE1,求點B到平面PEC的距離

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果函數(shù)yf(x)的導函數(shù)的圖象如圖所示,給出下列判斷:

①函數(shù)yf(x)在區(qū)間內單調遞增;

②函數(shù)yf(x)在區(qū)間內單調遞減;

③函數(shù)yf(x)在區(qū)間(4,5)內單調遞增;

④當x2時,函數(shù)yf(x)有極小值;

⑤當x時,函數(shù)yf(x)有極大值.

則上述判斷中正確的是(  )

A. ①② B. ②③

C. ③④⑤ D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正四棱錐中,已知異面直線所成的角為,給出下面三個命題:

:若,則此四棱錐的側面積為;

:若分別為的中點,則平面;

:若都在球的表面上,則球的表面積是四邊形面積的倍.

在下列命題中,為真命題的是( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案