已知tanα=
1
3
,則tan2α=
 
考點(diǎn):二倍角的正切
專題:三角函數(shù)的求值
分析:由條件利用二倍角的正切公式,求得tan2α的值.
解答: 解:∵tanα=
1
3
,∴tan2α=
2tanα
1-tan2α
=
2
3
1-
1
9
=
3
4
,
故答案為:
3
4
點(diǎn)評(píng):本題主要考查二倍角的正切公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a∈R,集合A={x|(x-1)(x-a)≥0},B={(a-1)x≥a2-2a+1},若A∪B=R,則a的取值范圍為( 。
A、(-∞,2)
B、(2,+∞)
C、(1,2]
D、(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x3+4xf′(1),則f′(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓C的方程為
x2
a2
+
y2
b2
=1(a>b>0),F(xiàn)1、F2分別是它的左、右焦點(diǎn),已知橢圓C過(guò)點(diǎn)(0,1),且離心率e=
2
2
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓的左、右頂點(diǎn)分別為A、B,直線l的方程為x=4,P是橢圓上異于A、B的任意一點(diǎn),直線PA、PB分別交直線l于D、E兩點(diǎn),求
F1D
F2E
的值;
(Ⅲ)過(guò)點(diǎn)Q(1,0)任意作直線m(與x軸不垂直)與橢圓C交于M、N兩點(diǎn),與l交于R點(diǎn),
RM
=x
MQ
,
RN
=y
NQ
. 求證:4x+4y+5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將f(x)=sin(2x+
π
6
)向右平移
π
6
個(gè)單位后,所得的圖象對(duì)應(yīng)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某高校在2014年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100],得到的頻率分布直方圖如圖所示.
(Ⅰ)分別求第3,4,5組的頻率;
(Ⅱ)該校決定在第3,4,5組中用分層抽樣抽取6名學(xué)生進(jìn)行問(wèn)卷調(diào)查,然后再?gòu)倪@6名學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行面談,若這2名學(xué)生中有ξ名學(xué)生是第4組的,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正數(shù)x,y滿足x2+y2=1,則
1
x
+
1
y
的最小值為( 。
A、
3
5
2
B、
2
C、
5
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的定義域:
(1)y=8 
1
2x-1
;
(2)y=
1-(
1
2
)x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:?x>0,2x>1,則¬p為( 。
A、?x>0,2x≤1
B、?x0>0,2 x0≤1
C、?x0>0,2 x0>1
D、?x0>0,2 x0≥1

查看答案和解析>>

同步練習(xí)冊(cè)答案