圓(x+2)2+y2=4與圓(x-2)2+(y-1)2=9的位置關(guān)系為( )
A.內(nèi)切
B.相交
C.外切
D.相離
【答案】分析:求出兩圓的圓心和半徑,計算兩圓的圓心距,將圓心距和兩圓的半徑之和或半徑之差作對比,判斷兩圓的位置關(guān)系.
解答:解:圓(x+2)2+y2=4的圓心C1(-2,0),半徑r=2.
圓(x-2)2+(y-1)2=9的圓心C2(2,1),半徑R=3,
兩圓的圓心距d==,
R+r=5,R-r=1,
R+r>d>R-r,
所以兩圓相交,
故選B.
點評:本題考查圓與圓的位置關(guān)系及其判定的方法,關(guān)鍵是求圓心距和兩圓的半徑.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

4、已知圓(x+2)2+y2=36的圓心為M,設(shè)A為圓上任一點,N(2,0),線段AN的垂直平分線交MA于點P,則動點P的軌跡是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓(x+2)2+y2=5關(guān)于y=x對稱的圓的方程是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動圓P與兩圓(x+2)2+y2=2,(x-2)2+y2=2中的一個內(nèi)切,另一個外切.
(1)求動圓圓心P的軌跡E的方程;
(2)過(2,0)作直線l交曲線E于A、B兩點,使得|AB|=2
2
,求直線l的方程;
(3)若從動點P向圓C:x2+(y-4)2=1作兩條切線,切點為A、B,設(shè)|PC|=t,試用t表示
PA
PB
,并求
PA
PB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

中心在原點,對稱軸為坐標軸的雙曲線C的兩條漸近線與圓(x-2)2+y2=1都相切,則雙曲線C的離心率是
2
3
3
或2
2
3
3
或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

圓C與圓(x+2)2+(y-1)2=1關(guān)于直線y=x+2對稱,則圓C的方程是


  1. A.
    (x+1)2+y2=1
  2. B.
    (x-1)2+y2=1
  3. C.
    (x+1)2+y2=2
  4. D.
    (x+3)2+y2=1

查看答案和解析>>

同步練習(xí)冊答案