已知曲線上任意一點(diǎn)到直線的距離是它到點(diǎn)距離的倍;曲線是以原點(diǎn)為頂點(diǎn),為焦點(diǎn)的拋物線.
(Ⅰ)求,的方程;
(Ⅱ)過(guò)作兩條互相垂直的直線,其中相交于點(diǎn),相交于點(diǎn),求四邊形面積的取值范圍.
(Ⅰ),;(Ⅱ).

試題分析:(Ⅰ)求 曲線,則設(shè)該曲線上某點(diǎn),然后根據(jù)題目條件,得到關(guān)于的方程,再化簡(jiǎn)即可得到.曲線可以根據(jù)拋物線的幾何性質(zhì)得到,為拋物線焦點(diǎn),從而得到;(Ⅱ)用點(diǎn)斜式設(shè)出的方程為,與拋物線方程聯(lián)立,即可得到關(guān)于點(diǎn)坐標(biāo)的方程.再根據(jù)韋達(dá)定理即得到的長(zhǎng)度.由題意可設(shè)的方程為,代入可得關(guān)于點(diǎn)坐標(biāo)的方程.再根據(jù)韋達(dá)定理即得到的長(zhǎng)度.因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030911339559.png" style="vertical-align:middle;" />,從而四邊形的面積為,經(jīng)化簡(jiǎn),通過(guò)基本不等式即可得到四邊形面積的取值范圍為.
試題解析:(Ⅰ)設(shè),則由題意有,化簡(jiǎn)得:.
的方程為,易知的方程為.                      4分
(Ⅱ)由題意可設(shè)的方程為,代入,
設(shè),則,
所以.           7分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030911589438.png" style="vertical-align:middle;" />,故可設(shè)的方程為,代入
,設(shè),則,
所以.   10分
故四邊形的面積為

()
設(shè),因此
,當(dāng)且僅當(dāng)等號(hào)成立.
故四邊形面積的取值范圍為.                               13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓E:=1()過(guò)點(diǎn)M(2,), N(,1),為坐標(biāo)原點(diǎn)
(I)求橢圓E的方程;
(II)是否存在以原點(diǎn)為圓心的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且?若存在,寫出該圓的方程;若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為,點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),過(guò)點(diǎn)的直線交拋物線于兩點(diǎn)。
(Ⅰ)試問(wèn)在軸上是否存在不同于點(diǎn)的一點(diǎn),使得軸所在的直線所成的銳角相等,若存在,求出定點(diǎn)的坐標(biāo),若不存在說(shuō)明理由。
(Ⅱ)若的面積為,求向量的夾角;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線y=kx+b與橢圓交于A、B兩點(diǎn),記△AOB的面積為S.

(1)求在k=0,0<b<1的條件下,S的最大值;
(2)當(dāng)|AB|=2,S=1時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為,最小值為
(Ⅰ)求橢圓方程;
(Ⅱ)若直線與橢圓交于不同的兩點(diǎn),且線段的垂直平分線過(guò)定點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓直線與圓相切,且交橢圓兩點(diǎn),是橢圓的半焦距,,
(Ⅰ)求的值;
(Ⅱ)O為坐標(biāo)原點(diǎn),若求橢圓的方程;
(Ⅲ) 在(Ⅱ)的條件下,設(shè)橢圓的左右頂點(diǎn)分別為A,B,動(dòng)點(diǎn),直線AS,BS與直線分別交于M,N兩點(diǎn),求線段MN的長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知雙曲線的兩條漸近線與拋物線的準(zhǔn)線分別交于兩點(diǎn),為坐標(biāo)原點(diǎn),的面積為,則雙曲線的離心率(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知直線交拋物線、兩點(diǎn),則△(     )
A.為直角三角形B.為銳角三角形
C.為鈍角三角形D.前三種形狀都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)、分別為雙曲線的左、右焦點(diǎn),為雙曲線的左頂點(diǎn),以為直徑的圓交雙曲線某條漸過(guò)線、兩點(diǎn),且滿足,則該雙曲線的離心率為(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案