△ABC的三個(gè)頂點(diǎn)分別是A(1,-1,2),B(5,-6,2),C(1,3,-1),則AC邊上的高BD長(zhǎng)為_(kāi)_____.
∵A(1,-1,2),B(5,-6,2),C(1,3,-1),
AB
=(4,-5,0),
AC
=(0,4,-3),
∵點(diǎn)D在直線AC上,
∴設(shè)
AD
AC
=(0,4λ,-3λ),
由此可得
BD
=
AD
-
AB
=(0,4λ,-3λ)-(4,-5,0)=(-4,4λ+5,-3λ),
又∵
BD
AC

BD
AC
=-4×0+(4λ+5)×4+(-3λ)×(-3)=0,解得λ=-
4
5

因此
BD
=(-4,4λ+5,-3λ)=(-4,
9
5
,
12
5
),
可得|
BD
|=
(-4)2+(
9
5
)
2
+(
12
5
)
2
=5
故答案為:5
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如右圖,在直四棱柱A1B1C1D1-DABC中,當(dāng)?shù)酌嫠倪呅?i>ABCD滿足條件______________時(shí),有A1BB1D1.?(注:填上你認(rèn)為正確的一種條件即可,不必考慮所有可能的情形)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分10分)已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,底面ABCD,且PA=AD=DC=AB=1,M是PB的中點(diǎn)。(Ⅰ)證明:面PAD⊥面PCD;(Ⅱ)求AC與PB所成的角的余弦值;(Ⅲ)求面AMC與面BMC所成二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若平面α與β的法向量分別是
a
=(2,4,-3),
b
=(-1,2,2)
,則平面α與β的位置關(guān)系是( 。
A.平行B.垂直
C.相交但不垂直D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

P是平面ABCD外的點(diǎn),四邊形ABCD是平行四邊形,
AB
=(2,-1,-4),
AD
=(4,2,0),
AP
=(-1,2,-1).
(1)求證:PA⊥平面ABCD;
(2)對(duì)于向量
a
=(x1,y1z1),
b
=(x2y2z2),
c
=(x3y3z3)
,定義一種運(yùn)算:(
a
×
b
)•
c
=x1y2z3+x2y3z1+x3y1z2-x1y3z2-x2z3-x3y2z1
,試計(jì)算(
AB
×
AD
)-
AP
的絕對(duì)值;說(shuō)明其與幾何體P-ABCD的體積關(guān)系,并由此猜想向量這種運(yùn)算(
AB
×
AD
)-
AP
的絕對(duì)值的幾何意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,三棱柱ABC-A1B1C1的側(cè)棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1上動(dòng)點(diǎn),F(xiàn)是AB中點(diǎn),AC=1,BC=2,AA1=4.
(1)當(dāng)E是棱CC1中點(diǎn)時(shí),求證:CF平面AEB1;
(2)在棱CC1上是否存在點(diǎn)E,使得二面角A-EB1-B的余弦值是
2
17
17
,若存在,求CE的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點(diǎn).
(1)證明:CD⊥AE;
(2)證明:PD⊥平面ABE;
(3)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,PDCE為矩形,ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=
1
2
CD=a,PD=
2
a.
(1)若M為PA中點(diǎn),求證:AC平面MDE;
(2)求平面PAD與PBC所成銳二面角的大。ɡ恚;
求二面角P-AC-D的正切值的大。ㄎ模

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知是兩條異面直線,,那么的位置關(guān)系____________________。

查看答案和解析>>

同步練習(xí)冊(cè)答案