(2013•松江區(qū)一模)已知lgx+lgy=1,則
5
x
+
2
y
的最小值是
2
2
分析:先根據(jù)對數(shù)的運算性質化簡lgx+lgy=1得到xy的值,且由對數(shù)函數(shù)的定義域得到x與y都大于0,然后把所求的式子通分后,利用分子利用基本不等式變形,將xy的值代入即可求出所求式子的最小值.
解答:解:由lgx+lgy=lgxy=1,得到xy=10,且x>0,y>0,
5
x
+
2
y
=
5y+2x
xy
=
2x+5y
10
2
2x•5y
10
=2

當且僅當2x=5y=10時取等號
5
x
+
2
y
的最小值是2
故答案為:2
點評:本題主要考查了基本不等式與對數(shù)的運算性質,要求學生掌握基本不等式,即a+b≥2
ab
(a>0,b>0),當且僅當a=b時取等號,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•松江區(qū)一模)設f(x)是定義在R上的函數(shù),對x∈R都有f(-x)=f(x),f(x)•f(x+2)=10,且當x∈[-2,0]時,f(x)=(
1
2
)x-1
,若在區(qū)間(-2,6]內關于x的方程f(x)-loga(x+2)=0(a>1)恰有3個不同的實數(shù)根,則a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•松江區(qū)一模)拋物線的焦點為橢圓
x2
5
+
y2
4
=1
的右焦點,頂點在橢圓中心,則拋物線方程為
y2=4x
y2=4x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•松江區(qū)一模)定義變換T將平面內的點P(x,y)(x≥0,y≥0)變換到平面內的點Q(
x
,
y
)

若曲線C0
x
4
+
y
2
=1(x≥0,y≥0)
經變換T后得到曲線C1,曲線C1經變換T后得到曲線C2…,依此類推,曲線Cn-1經變換T后得到曲線Cn,當n∈N*時,記曲線Cn與x、y軸正半軸的交點為An(an,0)和Bn(0,bn).某同學研究后認為曲線Cn具有如下性質:
①對任意的n∈N*,曲線Cn都關于原點對稱;
②對任意的n∈N*,曲線Cn恒過點(0,2);
③對任意的n∈N*,曲線Cn均在矩形OAnDnBn(含邊界)的內部,其中Dn的坐標為Dn(an,bn);
④記矩形OAnDnBn的面積為Sn,則
lim
n→∞
Sn=1

其中所有正確結論的序號是
③④
③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•松江區(qū)一模)已知遞增的等差數(shù)列{an}的首項a1=1,且a1、a2、a4成等比數(shù)列.
(1)求數(shù)列{an}的通項公式an;
(2)設數(shù)列{cn}對任意n∈N*,都有
c1
2
+
c2
22
+…+
cn
2n
=an+1
成立,求c1+c2+…+c2012的值.
(3)若bn=
an+1
an
(n∈N*),求證:數(shù)列{bn}中的任意一項總可以表示成其他兩項之積.

查看答案和解析>>

同步練習冊答案