已知P(3cosα,3sinα,1)和Q(2cosβ,2sinβ,1),則|PQ|的取值范圍是( 。
A、[1,5]
B、(1,5)
C、[0,5]
D、[0,25]
考點:空間向量的夾角與距離求解公式
專題:空間向量及應(yīng)用
分析:由已知得|PQ|=
(2cosβ-3cosα)2+(2sinβ-3sinα)2+(1-1)2
=
13-12cos(α-β)
,由此能求出|PQ|的取值范圍.
解答: 解:∵P(3cosα,3sinα,1)和Q(2cosβ,2sinβ,1),
∴|PQ|=
(2cosβ-3cosα)2+(2sinβ-3sinα)2+(1-1)2

=
13-12(cosαcosβ+sinαsinβ)

=
13-12cos(α-β)
,
∴|PQ|的取值范圍是[1,5].
故選:A.
點評:本題考查兩點間距離的取值范圍的求法,是基礎(chǔ)題,解題時要注意空間中兩點間距離公式和三角函數(shù)性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD中,A(0,-1)D(0,1)B(2,-1)C(2,1),動點P在線段OM上運動,動點Q在線段CB上運動,保持|OP|=|CQ|,則直線AP與DQ的交點T的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下命題:
①i是虛數(shù)單位,復(fù)數(shù)
2i
1+i
的實部為1;
②命題p:“?x∈R+,sinx+
1
sinx
≥2”是真命題;
③已知線性回歸方程為
?
y
=3+2x,當(dāng)變量x增加2個單位,其預(yù)報值平均增加4個單位;
④把函數(shù)y=3sin(2x+
π
3
)的圖象按向量
n
=(
π
3
,1)平移后得到y(tǒng)=1+3sin2x的圖象;
⑤已知
2
2-4
+
6
6-4
=2,
5
5-4
+
3
3-4
=2,
7
7-4
+
1
1-4
=2,
10
10-4
+
-2
-2-4
=2,依照以上各式的規(guī)律,得到一般性的等式為
n
n-4
+
8-n
(8-n)-4
=2,(n≠4).
則正確命題的序號為
 
(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將y=f′(x)sinx圖象向左平移
π
4
個單位,得y=1-2sin2x圖象,則f(x)=( 。
A、2cosxB、2sinx
C、sinxD、cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的圖象如圖所示,下列數(shù)值排序正確的是( 。
A、0<f′(3)<f′(4)<f(4)-f(3)
B、0<f′(3)<f(4)-f(3)<f′(4)
C、0<f′(4)<f′(3)<f(4)-f(3)
D、0<f(4)-f(3)<f′(3)<f′(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,0<a1<a4=1,則能使不等式(a1-
1
a1
)+(a2-
1
a2
)+…+(an-
1
an
)≤0
成立的最大正整數(shù)n是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cosβ=-
1
3
,sin(α+β)=
7
9
,且α∈(0,
π
2
),β∈(
π
2
,π),求cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列計算正確的有( 。﹤
①(-7)×6
a
=-42
a
;②(
a
-2
b
)+2
a
+2
b
=3
a
;③(
a
+
b
)-(
a
-
b
)=0.
A、0B、1C、2D、3

查看答案和解析>>

同步練習(xí)冊答案