(14分)(2011•福建)已知a,b為常數(shù),且a≠0,函數(shù)f(x)=﹣ax+b+axlnx,f(e)=2(e=2.71828…是自然對(duì)數(shù)的底數(shù)).
(I)求實(shí)數(shù)b的值;
(II)求函數(shù)f(x)的單調(diào)區(qū)間;
(III)當(dāng)a=1時(shí),是否同時(shí)存在實(shí)數(shù)m和M(m<M),使得對(duì)每一個(gè)t∈[m,M],直線y=t與曲線y=f(x)(x∈[,e])都有公共點(diǎn)?若存在,求出最小的實(shí)數(shù)m和最大的實(shí)數(shù)M;若不存在,說(shuō)明理由.

(I)b=2
(II)當(dāng)a>0時(shí),函數(shù)f(x)的單調(diào)遞增區(qū)間為(1,+∞),單調(diào)遞減區(qū)間為(0,1);
當(dāng)a<0時(shí),函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間為(1,+∞);
(III)見(jiàn)解析

解析試題分析:(I)把x=e代入函數(shù)f(x)=﹣ax+b+axlnx,解方程即可求得實(shí)數(shù)b的值;
(II)求導(dǎo),并判斷導(dǎo)數(shù)的符號(hào),確定函數(shù)的單調(diào)區(qū)間;
(III)假設(shè)存在實(shí)數(shù)m和M(m<M),使得對(duì)每一個(gè)t∈[m,M],直線y=t與曲線y=f(x)(x∈[,e])都有公共點(diǎn),轉(zhuǎn)化為利用導(dǎo)數(shù)求函數(shù)y=f(x)在區(qū)間[,e]上的值域.
解:(I)由f(e)=2,代入f(x)=﹣ax+b+axlnx,
得b=2;
(II)由(I)可得f(x)=﹣ax+2+axlnx,函數(shù)f(x)的定義域?yàn)椋?,+∞),
從而f′(x)=alnx,
∵a≠0,故
①當(dāng)a>0時(shí),由f′(x)>0得x>1,由f′(x)<0得0<x<1;
②當(dāng)a<0時(shí),由f′(x)>0得0<x<1,由f′(x)<0得x>1;
綜上,當(dāng)a>0時(shí),函數(shù)f(x)的單調(diào)遞增區(qū)間為(1,+∞),單調(diào)遞減區(qū)間為(0,1);
當(dāng)a<0時(shí),函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間為(1,+∞);
(III)當(dāng)a=1時(shí),f(x)=﹣x+2+xlnx,f′(x)=lnx,
由(II)可得,當(dāng)x∈(,e),f(x),f′(x)變化情況如下表:

又f()=2﹣<2,
所以y=f(x)在[,e]上的值域?yàn)閇1,2],
據(jù)此可得,若,則對(duì)每一個(gè)t∈[m,M],直線y=t與曲線y=f(x)(x∈[,e])都有公共點(diǎn);
并且對(duì)每一個(gè)t∈(﹣∞,m)∪(M,+∞),直線y=t與曲線y=f(x)(x∈[,e])都沒(méi)有公共點(diǎn);
綜上當(dāng)a=1時(shí),存在最小實(shí)數(shù)m=1和最大的實(shí)數(shù)M=2(m<M),使得對(duì)每一個(gè)t∈[m,M],直線y=t與曲線y=f(x)(x∈[,e])都有公共點(diǎn).
點(diǎn)評(píng):此題是個(gè)難題.主要考查函數(shù)、導(dǎo)數(shù)等基礎(chǔ)知識(shí),考查推理論證能力和抽象概括能力、運(yùn)算求解能力,考查函數(shù)與方程思想,數(shù)形結(jié)合思想,化歸和轉(zhuǎn)化思想,分類與整合思想.其中問(wèn)題(III)是一個(gè)開(kāi)放性問(wèn)題,考查了同學(xué)們觀察、推理以及創(chuàng)造性地分析問(wèn)題、解決問(wèn)題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)f(x)是定義在區(qū)間(1,+∞)上的函數(shù),其導(dǎo)函數(shù)為f′(x).如果存在實(shí)數(shù)a和函數(shù)h(x),其中h(x)對(duì)任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),則稱函數(shù)f(x)具有性質(zhì)P(a).
(1)設(shè)函數(shù)f(x)=ln x+ (x>1),其中b為實(shí)數(shù).
①求證:函數(shù)f(x)具有性質(zhì)P(b);
②求函數(shù)f(x)的單調(diào)區(qū)間;
(2)已知函數(shù)g(x)具有性質(zhì)P(2).給定x1,x2∈(1,+∞),x1<x2,設(shè)m為實(shí)數(shù),α=mx1+(1-m)x2,β=(1-m)x1+mx2,且α>1,β>1,若|g(α)-g(β)|<|g(x1)-g(x2)|,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求的極值;
(2)若對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù) 
(1)求在點(diǎn)處的切線方程;
(2)證明:曲線與曲線有唯一公共點(diǎn);
(3)設(shè),比較的大小, 并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)若函數(shù)時(shí)取得極值,求實(shí)數(shù)的值;
(2)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)(2011•重慶)設(shè)f(x)=2x3+ax2+bx+1的導(dǎo)數(shù)為f′(x),若函數(shù)y=f′(x)的圖象關(guān)于直線x=﹣對(duì)稱,且f′(1)=0
(Ⅰ)求實(shí)數(shù)a,b的值
(Ⅱ)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的導(dǎo)函數(shù)。  (1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)若對(duì)一切的實(shí)數(shù),有成立,求的取值范圍; 
(3)當(dāng)時(shí),在曲線上是否存在兩點(diǎn),使得曲線在 兩點(diǎn)處的切線均與直線交于同一點(diǎn)?若存在,求出交點(diǎn)縱坐標(biāo)的最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)上的最大值為).
(1)求數(shù)列的通項(xiàng)公式;
(2)求證:對(duì)任何正整數(shù)n (n≥2),都有成立;
(3)設(shè)數(shù)列的前n項(xiàng)和為Sn,求證:對(duì)任意正整數(shù)n,都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=x3+ax2+bx.
(1)若函數(shù)y=f(x)在x=2處有極值-6,求y=f(x)的單調(diào)遞減區(qū)間;
(2)若y=f(x)的導(dǎo)數(shù)f′(x)對(duì)x∈[-1,1]都有f′(x)≤2,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案