【題目】如圖,四棱錐中,底面是平行四邊形,,,平面.
(1)證明:平面;
(2)求直線與平面所成角的正弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)根據(jù)菱形對角線互相垂直及平面ABCD,由線面垂直的判定定理得到平面PBD;
(2)可直接作出線面角用幾何法求之,也可建立空間直角坐標系用向量法求之.
(Ⅰ)底面ABCD是平行四邊形且,
是菱形,即,
又平面ABCD,得,
所以平面PBD.
(Ⅱ)方法一(幾何法):
取BC的中點Q,
連結(jié)PQ,DQ,交AC于點G,
過點G作,連HC,
在平行四邊形ABCD中且
是正三角形,即點G為重心,
又平面ABCD,得,又,
即平面PDQ,所以面面PDQ,
由作法知,平面PBC,
所以就是直線AC與平面PBC所成的角,
設(shè),則,再由相似求得
在,,
所以直線AC與平面PBC所成角的正弦值是.
方法二(坐標法):
取PB的中點Q,以O為原點,分別以OA,OB,OQ為軸建立空間直角坐標系,
設(shè),則,,,,,
,,,
設(shè)平面PBC法向量,
則,
取,
記直線AC與平面PBC所成角為,
得,
所以直線AC與平面PBC所成角的正弦值是.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+acosx.
(1)求函數(shù)f(x)的奇偶性.并證明當|a|≤2時函數(shù)f(x)只有一個極值點;
(2)當a=π時,求f(x)的最小值;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市房管局為了了解該市市民2018年1月至2019年1月期間購買二手房情況,首先隨機抽樣其中200名購房者,并對其購房面積(單位:萬元/平方米,進行了一次調(diào)查統(tǒng)計,制成了如圖1所示的頻率分布直方圖,接著調(diào)查了該市2018年1月至2019年1月期間當月在售二手房均價(單位:萬元平方米),制成了如圖2所示的散點圖(圖中月份代碼1-13分別對應2018年1月至2019年1月).
(1)試估計該市市民的平均購房面積.
(2)現(xiàn)采用分層抽樣的方法從購房面積位于的40位市民中隨機取4人,再從這4人中隨機抽取2人,求這2人的購房面積恰好有一人在的概率.
(3)根據(jù)散點圖選和兩個模型進行擬合,經(jīng)過數(shù)據(jù)處理得到兩個回歸方程,分別為和,并得到一些統(tǒng)計量的值,如下表所示:
0.000591 | 0.000164 | |
0.00050 |
請利用相關(guān)指數(shù)判斷哪個模型的擬合效果更好,并用擬合效果更好的模型預測2019年6月份的二手房購房均價(精確到0.001)./span>
參考數(shù)據(jù):,,,,,,,,
參考公式:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),給出下列四個結(jié)論:
①函數(shù)的最小正周期是;
②函數(shù)在區(qū)間上是減函數(shù);
③函數(shù)的圖象關(guān)于直線對稱;
④函數(shù)的圖象可由函數(shù)的圖象向左平移個單位得到其中所有正確結(jié)論的編號是( )
A.①②B.①③C.①②③D.①③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左右焦點分別為F1F2,右頂點為A,P為橢圓C上任意一點.已知的最大值為3,最小值為2.
(1)求橢圓C的方程;
(2)若直線l:y=kx+m與橢圓C相交于MN兩點(MN不是左右頂點),且以MN為直徑的圓過點A.求證:直線l過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某科研團隊研發(fā)了一款快速檢測某種疾病的試劑盒.為了解該試劑盒檢測的準確性,質(zhì)檢部門從某地區(qū)(人數(shù)眾多)隨機選取了位患者和位非患者,用該試劑盒分別對他們進行檢測,結(jié)果如下:
(1)從該地區(qū)患者中隨機選取一人,對其檢測一次,估計此患者檢測結(jié)果為陽性的概率;
(2)從該地區(qū)患者中隨機選取人,各檢測一次,假設(shè)每位患者的檢測結(jié)果相互獨立,以表示檢測結(jié)果為陽性的患者人數(shù),利用(1)中所得概率,求的分布列和數(shù)學期望;
(3)假設(shè)該地區(qū)有萬人,患病率為.從該地區(qū)隨機選取一人,用該試劑盒對其檢測一次.若檢測結(jié)果為陽性,能否判斷此人患該疾病的概率超過?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】阿基米德是古希臘偉大的哲學家、數(shù)學家、物理學家,對幾何學、力學等學科作出過卓越貢獻.為調(diào)查中學生對這一偉大科學家的了解程度,某調(diào)查小組隨機抽取了某市的100名高中生,請他們列舉阿基米德的成就,把能列舉阿基米德成就不少于3項的稱為“比較了解”,少于三項的稱為“不太了解”.他們的調(diào)查結(jié)果如下:
0項 | 1項 | 2項 | 3項 | 4項 | 5項 | 5項以上 | |
理科生(人) | 1 | 10 | 17 | 14 | 14 | 10 | 4 |
文科生(人) | 0 | 8 | 10 | 6 | 3 | 2 | 1 |
(1)完成如下列聯(lián)表,并判斷是否有的把握認為,了解阿基米德與選擇文理科有關(guān)?
比較了解 | 不太了解 | 合計 | |
理科生 | |||
文科生 | |||
合計 |
(2)在抽取的100名高中生中,按照文理科采用分層抽樣的方法抽取10人的樣本.
(i)求抽取的文科生和理科生的人數(shù);
(ii)從10人的樣本中隨機抽取3人,用表示這3人中文科生的人數(shù),求的分布列和數(shù)學期望.
參考數(shù)據(jù):
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com