設(shè)函數(shù).
(I)求函數(shù)的單調(diào)遞增區(qū)間;
(II) 若關(guān)于的方程在區(qū)間內(nèi)恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)的取值范圍.
(Ⅰ);(Ⅱ)的取值范圍是

試題分析:(Ⅰ)求出導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)大于0求得的單調(diào)遞增區(qū)間.
(Ⅱ)令.利用導(dǎo)數(shù)求出的單調(diào)區(qū)間和極值點(diǎn),畫出其簡圖,結(jié)合函數(shù)零點(diǎn)的判定定理找出所滿足的條件,由此便可求出的取值范圍.
試題解析:(Ⅰ)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023637545573.png" style="vertical-align:middle;" />, 

,則使的取值范圍為,
故函數(shù)的單調(diào)遞增區(qū)間為  
(Ⅱ)∵,
 
,  
,且,
,由.
在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間內(nèi)單調(diào)遞增, 
在區(qū)間內(nèi)恰有兩個(gè)相異實(shí)根   
解得:.
綜上所述,的取值范圍是  
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)(其中為常數(shù)).
(I)當(dāng)時(shí),求函數(shù)的最值;
(Ⅱ)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知f(x)=xlnx.
(I)求f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)證明:都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)若函數(shù)上是增函數(shù),求正實(shí)數(shù)的取值范圍;
(Ⅱ)若,,設(shè),求函數(shù)上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),且.
(1)求函數(shù),的表達(dá)式;
(2)當(dāng)時(shí),不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù) .
(1)若.
(2)若函數(shù)上是增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知.
(1)求的極值,并證明:若
(2)設(shè),且,,證明:,
,由上述結(jié)論猜想一個(gè)一般性結(jié)論(不需要證明);
(3)證明:若,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)的圖象如圖所示(其中是函數(shù)的導(dǎo)函數(shù))下面四個(gè)圖象中,的圖象大致是    (  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè),則函數(shù)的單調(diào)遞增區(qū)間是________.

查看答案和解析>>

同步練習(xí)冊答案