【題目】已知函數(shù),.

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)令,討論的單調(diào)性.

(3)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.( 為自然對(duì)數(shù)的底數(shù), …).

【答案】(1)(2)詳見解析(3)

【解析】

(1)當(dāng)時(shí),先對(duì)函數(shù)求導(dǎo),求得斜率,結(jié)合切點(diǎn)坐標(biāo),利用點(diǎn)斜式得到切線方程.(2)求出的表達(dá)式,對(duì)求得,然后將分成四類,討論函數(shù)的單調(diào)區(qū)間.(3)將表達(dá)式代入原不等式并化簡(jiǎn),構(gòu)造函數(shù)設(shè)利用導(dǎo)數(shù)求得函數(shù)的最小值,令這個(gè)最小值大于零,求得的取值范圍.

解:(1),,,

所以曲線在點(diǎn)處的切線方程為.

(2),定義域?yàn)?/span>,

,

①當(dāng)時(shí),當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;

②當(dāng)時(shí),當(dāng)時(shí),,,上單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;

③當(dāng)時(shí),單調(diào)遞增;

④當(dāng)時(shí),當(dāng)時(shí),,上單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.

綜上,當(dāng)時(shí),單調(diào)遞增,在單調(diào)遞減;當(dāng)時(shí),,上單調(diào)遞增,在單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),,上單調(diào)遞增,在單調(diào)遞減.

(3)當(dāng)時(shí),,即恒成立,

設(shè),,

顯然上單調(diào)遞增,且,所以當(dāng)時(shí),;當(dāng)時(shí),.即上單調(diào)遞減,在上單調(diào)遞增. ,所以

所以的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知梯形中,,,的中點(diǎn).,分別是上的動(dòng)點(diǎn),且,設(shè)),沿將梯形翻折,使平面平面,如圖.

1)當(dāng)時(shí),求證:;

2)若以、為頂點(diǎn)的三棱錐的體積記為,求的最大值;

3)當(dāng)取得最大值時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某保險(xiǎn)公司有一款保險(xiǎn)產(chǎn)品的歷史收益率(收益率利潤(rùn)保費(fèi)收入)的頻率分布直方圖如圖所示:

(1)試估計(jì)這款保險(xiǎn)產(chǎn)品的收益率的平均值;

(2)設(shè)每份保單的保費(fèi)在20元的基礎(chǔ)上每增加元,對(duì)應(yīng)的銷量為(萬(wàn)份).從歷史銷售記錄中抽樣得到如下5組的對(duì)應(yīng)數(shù)據(jù):

25

30

38

45

52

銷量為(萬(wàn)份)

7.5

7.1

6.0

5.6

4.8

由上表,知有較強(qiáng)的線性相關(guān)關(guān)系,且據(jù)此計(jì)算出的回歸方程為

(ⅰ)求參數(shù)的值;

(ⅱ)若把回歸方程當(dāng)作的線性關(guān)系,用(1)中求出的收益率的平均值作為此產(chǎn)品的收益率,試問每份保單的保費(fèi)定為多少元時(shí)此產(chǎn)品可獲得最大利潤(rùn),并求出最大利潤(rùn).注:保險(xiǎn)產(chǎn)品的保費(fèi)收入每份保單的保費(fèi)銷量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某縣位于沙漠地帶,人與自然長(zhǎng)期進(jìn)行頑強(qiáng)的斗爭(zhēng),到1998年底全縣的綠化率已達(dá)到30%。1999年開始,每年將出現(xiàn)這樣的局面,即原有沙漠面積的16%將被綠化,與此同時(shí),由于各種原因,原有綠化面積的4%又被沙化。

(1)設(shè)全縣面積為1,1998年底綠化總面積為,經(jīng)過(guò)n年后綠化總面積為求證:。

(2)至少需要多少年的努力,才能使全縣的綠化率超過(guò)60%?(年取整數(shù),lg2=0.3010)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年消毒液和口罩成了搶手年貨,老百姓幾乎人人都需要,但對(duì)于這種口罩,大多數(shù)人不是很了解.現(xiàn)隨機(jī)抽取40人進(jìn)行調(diào)查,其中45歲以下的有20人,在接受調(diào)查的40人中,對(duì)于這種口罩了解的占,其中45歲以上(含45歲)的人數(shù)占.

1)將答題卡上的列聯(lián)表補(bǔ)充完整;

2)判斷是否有的把握認(rèn)為對(duì)這種口罩的了解與否與年齡有關(guān).

參考公式:,其中.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓C: 的一個(gè)頂點(diǎn)與拋物線: 的焦點(diǎn)重合,分別是橢圓的左、右焦點(diǎn),離心率 ,過(guò)橢圓右焦點(diǎn)的直線l與橢圓C交于M、N兩點(diǎn).

(1)求橢圓C的方程;

(2)是否存在直線l,使得 ,若存在,求出直線l的方程;若不存在,說(shuō)明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,已知以點(diǎn)為圓心的及其上一點(diǎn).

1)設(shè)圓軸相切,與圓外切,且圓心在直線上,求圓的標(biāo)準(zhǔn)方程;

2)設(shè)平行于的直線與圓相交于兩點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在意大利,有一座滿是斗笠的灰白小鎮(zhèn)阿爾貝羅貝洛(Alberobello,這些圓錐形屋頂?shù)钠嫣匦∥菝?/span>Trullo,于1996年被收入世界文化遺產(chǎn)名錄(如圖1.現(xiàn)測(cè)量一個(gè)屋頂,得到圓錐SO的底面直徑AB長(zhǎng)為12m,母線SA長(zhǎng)為18m如圖2.CD是母線SA的兩個(gè)三等分點(diǎn)(點(diǎn)D近點(diǎn)AE是母線SB的中點(diǎn).

1)從點(diǎn)A到點(diǎn)C繞屋頂側(cè)面一周安裝燈光帶,求燈光帶的最小長(zhǎng)度;

2)現(xiàn)對(duì)屋頂進(jìn)行加固,在底面直徑AB上某一點(diǎn)P,向點(diǎn)D和點(diǎn)E分別引直線型鋼管PDPE.試確定點(diǎn)P的位置,使得鋼管總長(zhǎng)度最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐SABCD中,底面ABCD為長(zhǎng)方形,SB⊥底面ABCD,其中BS=2,BA=2BC=λ,λ的可能取值為:①;②;③;④;⑤λ=3

1)求直線AS與平面ABCD所成角的正弦值;

2)若線段CD上能找到點(diǎn)E,滿足AESE,則λ可能的取值有幾種情況?請(qǐng)說(shuō)明理由;

3)在(2)的條件下,當(dāng)λ為所有可能情況的最大值時(shí),線段CD上滿足AESE的點(diǎn)有兩個(gè),分別記為E1E2,求二面角E1SBE2的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案