已知離散型隨機(jī)變量的的分布列如右表,則(  )








A.            B.     
C.             D.
A

試題分析:根據(jù)題意,根據(jù)分布列的性質(zhì)可知,0.15+0.50+a=1,a=0.35,利用數(shù)學(xué)期望的公式可知 ,故選A.
點(diǎn)評:本題考查分布列的性質(zhì)和期望,本題解題的關(guān)鍵是根據(jù)分布列的性質(zhì)做出分布列中未知的字母,然后才代入求方差的公式,本題是一個(gè)基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為了了解某班的男女生學(xué)習(xí)體育的情況,按照分層抽樣分別抽取了10名男生和5名女生作為樣本,他們期末體育成績的莖葉圖如圖所示,其中莖為十位數(shù),葉為個(gè)位數(shù)。

(Ⅰ)若該班男女生平均分?jǐn)?shù)相等,求x的值;
(Ⅱ)若規(guī)定85分以上為優(yōu)秀,在該10名男生中隨機(jī)抽取2名,優(yōu)秀的人數(shù)記為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

隨機(jī)變量X的分布列是
X
4
7
9
10
P
0.3
a
b
0.2
E(X)=7.5,則a=________,b=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)隨機(jī)變量的分布列如表所示且Eξ=1.6,則a-b=
ξ
0
1
2
3
P
0.1
a
b
0.1
A.0.2    B.0.1     C.-0.2     D.-0.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

“肇實(shí),正名芡實(shí),因肇慶所產(chǎn)之芡實(shí)顆粒大、藥力強(qiáng),故名!蹦晨蒲兴鶠檫M(jìn)一步改良肇實(shí),為此對肇實(shí)的兩個(gè)品種(分別稱為品種A和品種B)進(jìn)行試驗(yàn).選取兩大片水塘,每大片水塘分成n小片水塘,在總共2n小片水塘中,隨機(jī)選n小片水塘種植品種A,另外n小片水塘種植B.
(1)假設(shè)n=4,在第一大片水塘中,種植品種A的小片水塘的數(shù)目記為,求的分布列和數(shù)學(xué)期望;
(2)試驗(yàn)時(shí)每大片水塘分成8小片,即n=8,試驗(yàn)結(jié)束后得到品種A和品種B在每個(gè)小片水塘上的每畝產(chǎn)量(單位:kg/畝)如下表:
 號碼
1
2
3
4
5
6
7
8
品種A
101
97
92
103
91
100
110
106
品種B
115
107
112
108
111
120
110
113
分別求品種A和品種B的每畝產(chǎn)量的樣本平均數(shù)和樣本方差;根據(jù)試驗(yàn)結(jié)果,你認(rèn)為應(yīng)該種植哪一品種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)是一個(gè)離散型隨機(jī)變量,其分布列如右表:則q=                
ξ
-1
0
1
P
0.5
1q
q2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


現(xiàn)有長分別為、的鋼管各根(每根鋼管質(zhì)地均勻、粗細(xì)相同且附有不同的編號),從中隨機(jī)抽取根(假設(shè)各鋼管被抽取的可能性是均等的,),再將抽取的鋼管相接焊成筆直的一根.
(1)當(dāng)時(shí),記事件{抽取的根鋼管中恰有根長度相等},求;
(2)當(dāng)時(shí),若用表示新焊成的鋼管的長度(焊接誤差不計(jì)),①求的分布列;
②令,,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知ξN(0,62),且P(-2≤ξ≤0)=0.4,則P(ξ>2)等于(  )
A.0.1B.0.2C.0.6D.0.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知隨機(jī)變量,則(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案