[2014·深圳調(diào)研]如圖,在四面體D-ABC中,若AB=CB,AD=CD,E是AC的中點(diǎn),則下列正確的是(  )

A.平面ABC⊥平面ABD

B.平面ABD⊥平面BDC

C.平面ABC⊥平面BDE,且平面ADC⊥平面BDE

D.平面ABC⊥平面ADC,且平面ADC⊥平面BDE

 

C

【解析】因?yàn)锳B=CB,且E是AC的中點(diǎn),所以BE⊥AC,同理有DE⊥AC,于是AC⊥平面BDE.因?yàn)锳C在平面ABC內(nèi),所以平面ABC⊥平面BDE.又由于AC?平面ACD,所以平面ACD⊥平面BDE,所以選C.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:9-3變量間的相關(guān)關(guān)系與統(tǒng)計(jì)案例(解析版) 題型:選擇題

[2013·福建高考]已知x與y之間的幾組數(shù)據(jù)如下表:

x

1

2

3

4

5

6

y

0

2

1

3

3

4

假設(shè)根據(jù)上表數(shù)據(jù)所得線性回歸直線方程為x+.若某同學(xué)根據(jù)上表中的前兩組數(shù)據(jù)(1,0)和(2,2)求得的直線方程為y=b′x+a′,則以下結(jié)論正確的是(  )

A. >b′,>a′ B. >b′,<a′

C. <b′,>a′ D. <b′,<a′

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:8-4直線與圓、圓與圓的位置關(guān)系(解析版) 題型:選擇題

[2012·湖北高考]過(guò)點(diǎn)P(1,1)的直線,將圓形區(qū)域{(x,y)|x2+y2≤4}分成兩部分,使得這兩部分的面積之差最大,則該直線的方程為(  )

A.x+y-2=0 B.y-1=0

C.x-y=0 D.x+3y-4=0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:7-7立體幾何中的向量方法(解析版) 題型:填空題

[2014·蘇州模擬]已知正方形ABCD的邊長(zhǎng)為4,CG⊥平面ABCD,CG=2,E,F(xiàn)分別是AB,AD的中點(diǎn),則點(diǎn)C到平面GEF的距離為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:7-6空間向量及運(yùn)算(解析版) 題型:選擇題

[2014·沈陽(yáng)調(diào)研]如圖,空間四邊形OABC中,=a,=b,=c.點(diǎn)M在OA上,且OM=2MA,N為BC的中點(diǎn),則等于(  )

A. a-b+c

B.-a+b+c

C. a+b-c

D.a+b-c

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:7-4直線、平面平行的判定及性質(zhì)(解析版) 題型:填空題

[2013·鄭州模擬]設(shè)α,β,γ為三個(gè)不同的平面,m,n是兩條不同的直線,在命題“α∩β=m,n?γ,且________,則m∥n”中的橫線處填入下列三組條件中的一組,使該命題為真命題.

①α∥γ,n?β;②m∥γ,n∥β;③n∥β,m?γ.

可以填入的條件有(  )

A.①或② B.②或③

C.①或③ D.①或②或③

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:7-2空間幾何體的表面積和體積(解析版) 題型:填空題

[2013·江蘇高考]如圖,在三棱柱A1B1C1-ABC中,D,E,F(xiàn)分別是AB,AC,AA1的中點(diǎn),設(shè)三棱錐F-ADE的體積為V1,三棱柱A1B1C1-ABC的體積為V2,則V1∶V2=________.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:6-5合情推理與演繹推理(解析版) 題型:選擇題

[2014·銀川質(zhì)檢]當(dāng)x∈(0,+∞)時(shí)可得到不等式x+≥2,x++()2≥3,由此可以推廣為x+≥n+1,取值p等于 (  )

A.nn B.n2 C.n D.n+1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:5-2等差數(shù)列及其前n項(xiàng)和(解析版) 題型:選擇題

[2014·揚(yáng)州質(zhì)檢]在等差數(shù)列{an}中,a1=-2014,其前n項(xiàng)和為Sn,若=2,則S2014的值等于 (  )

A.-2011 B.-2012 C.-2013 D.-2014

 

查看答案和解析>>

同步練習(xí)冊(cè)答案