設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,
Snn
)(n∈N+)
均在函數(shù)y=3x-2的圖象上.則數(shù)列{an}的通項(xiàng)公式為
 
分析:因?yàn)橐阎狞c(diǎn)在函數(shù)y=3x-2上,所以把點(diǎn)的坐標(biāo)代入到函數(shù)解析式中,化簡得到Sn的通項(xiàng)公式,然后利用an=Sn-Sn-1即可求出an的通項(xiàng)公式.
解答:解:因?yàn)?span id="kim4iqs" class="MathJye">(n,
Sn
n
)在y=3x-2的圖象上,
所以將(n,
Sn
n
)
代入到函數(shù)y=3x-2中得到:
Sn
n
=3n-2
,即{S}_{n}=n(3n-2),
則an=Sn-Sn-1=n(3n-2)-(n-1)[3(n-1)-2]=6n-5.且n=1時(shí),S1=1,
故答案為:an=6n-5(n∈N+
點(diǎn)評(píng):此題考查學(xué)生靈活運(yùn)用等差數(shù)列的前n項(xiàng)和的公式化簡求值,靈活運(yùn)用an=Sn-Sn-1求出等差數(shù)列的通項(xiàng)公式,是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)的和為Sn,且Sn=3n+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an(2n-1),求數(shù)列{bn}的前n項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列an的前n項(xiàng)的和為Sn,a1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求數(shù)列an的通項(xiàng)公式;
(3)設(shè)bn=(2log
3
2
an+1)•an
,求數(shù)列bn的前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關(guān)系式;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區(qū)域?yàn)镈n,若Dn內(nèi)的整點(diǎn)(整點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))個(gè)數(shù)為an(n∈N*
(1)寫出an+1與an的關(guān)系(只需給出結(jié)果,不需要過程),
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)數(shù)列an的前n項(xiàng)和為SnTn=
Sn
5•2n
,若對(duì)一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鄭州一模)設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2n-1,則
S4
a3
的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案