已知數(shù)列
的前
項(xiàng)和為
,點(diǎn)
在直線
上.數(shù)列
滿足
,且
,前9項(xiàng)和為153.
(1)求數(shù)列
、
{的通項(xiàng)公式;
(2)設(shè)
,數(shù)列
的前
和為
,求使不等式
對一切
都成立的最大正整數(shù)
的值;
(3)設(shè)
,問是否存在
,使得
成立?若存在,求出
的值;若不存在,請說明理由.
(1)
=
(2)
(3)存在唯一正整數(shù)
m =11,使得
成立.
試題分析:(1)由題意,得
即
故當(dāng)
時(shí),
當(dāng)
=1時(shí),
,而當(dāng)
=1時(shí),
+5=6,
所以,
又
,即
所以(
)為等差數(shù)列,于是
而
,
,
因此,
=
,即
=
(2)
所以,
由于
,
因此
Tn單調(diào)遞增,故
令
(Ⅲ)
①當(dāng)
m為奇數(shù)時(shí),
m + 15為偶數(shù).
此時(shí)
,
所以
②當(dāng)
m為偶數(shù)時(shí),
m + 15為奇數(shù).
此時(shí)
,
所以
(舍去).
綜上,存在唯一正整數(shù)
m =11,使得
成立.
點(diǎn)評:本題考查數(shù)列的通項(xiàng)與求和,考查裂項(xiàng)法的運(yùn)用,確定數(shù)列的通項(xiàng)是關(guān)鍵.考查運(yùn)算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.對數(shù)學(xué)思維的要求比較高,有一定的探索性.綜合性強(qiáng),難度大,易出錯(cuò),是高考的重點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知數(shù)列
滿足
,
;數(shù)列
滿足
,
.
(1)求數(shù)列
和
的通項(xiàng)公式;
(2)求數(shù)列
、
的前
項(xiàng)和
,
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)等差數(shù)列
的前n項(xiàng)的和為
,且
.
(1)求
的通項(xiàng)公式;
(2)令
,求
的前
項(xiàng)和
;
(3)若不等式
對于
N
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(1)已知等差數(shù)列
的前
項(xiàng)和
,求證:
(2)已知有窮等差數(shù)列
的前三項(xiàng)和為20,后三項(xiàng)和為130,且
,求
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知數(shù)列
是首項(xiàng)為
,公比
的等比數(shù)列. 設(shè)
,數(shù)列
滿足
.
(Ⅰ)求證:數(shù)列
成等差數(shù)列;
(Ⅱ)求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知等差數(shù)列
的公差和首項(xiàng)都不等于0,且
成等比數(shù)列,則
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知數(shù)列{a
}滿足a
=n+
,若對所有n
N
不等式a
≥a
恒成立,則實(shí)數(shù)c的取值范圍是_____________;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
.
(1)若函數(shù)
在區(qū)間
上有極值,求實(shí)數(shù)
的取值范圍;
(2)若關(guān)于
的方程
有實(shí)數(shù)解,求實(shí)數(shù)
的取值范圍;
(3)當(dāng)
,
時(shí),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知數(shù)列
滿足
,
,則此數(shù)列的通項(xiàng)
等于( )
查看答案和解析>>