【題目】某海輪以每小時(shí)30海里的速度航行,在點(diǎn)測(cè)得海面上油井在南偏東,海輪向北航行40分鐘后到達(dá)點(diǎn),測(cè)得油井在南偏東,海輪改為北偏東的航向再行駛80分鐘到達(dá)點(diǎn),則兩點(diǎn)的距離為(單位:海里)
A. B. C. D.
【答案】A
【解析】分析:由題意可得△PBC為直角三角形,其中∠PBC=90°,BC易求,所以要求PC轉(zhuǎn)求PB,解△PAB需構(gòu)造直角三角形,因此過P作AB的垂線.
詳解:過P作AB的垂線,垂足為E,
由題意得∠APB=∠ABP=30°.
∴AP=AB=30×=20.
在Rt△PAE中,PE=APsin60°=10 ,
在Rt△PBE中,PB= =20,
由已知可得∠PBC=90°,BC=30×=40,
∴Rt△PBC中,PC= =20 (海里).
點(diǎn)晴:本題考查的內(nèi)容為解三角形問題的實(shí)際應(yīng)用,注重正余弦定理的應(yīng)用,正確畫出草圖,標(biāo)上已知的邊和選,選用正確的公式
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓: ,直線過定點(diǎn).
(Ⅰ)若與圓相切,求的方程;
(Ⅱ)若與圓相交于、兩點(diǎn),求的面積的最大值,并求此時(shí)直線的方程.(其中點(diǎn)是圓的圓心)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市電力公司為了制定節(jié)電方案,需要了解居民用電情況,通過隨機(jī)抽樣,電力公司獲得了戶居民的月平均用電量,分為六組制出頻率分布表和頻率分布直方圖(如圖所示).
組號(hào) | 分組 | 頻數(shù) | 頻率 |
(1)求, 的值;
(2)為了解用電量較大的用戶用電情況,在第、兩組用分層抽樣的方法選取戶.
①求第、兩組各取多少戶?
②若再從這戶中隨機(jī)選出戶進(jìn)行入戶了解用電情況,求這戶中至少有一戶月平均用電量在范圍內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)統(tǒng)計(jì),某校學(xué)生上學(xué)路程所需要時(shí)間全部介于與之間(單位:分鐘).現(xiàn)從在校學(xué)生中隨機(jī)抽取人,按上學(xué)所學(xué)時(shí)間分組如下:第組,第組,第組,第組,第組,得打如圖所示的頻率分布直方圖.
(Ⅰ)根據(jù)圖中數(shù)據(jù)求的值.
(Ⅱ)若從第,,組中用分成抽樣的方法抽取人參與交通安全問卷調(diào)查,應(yīng)從這三組中各抽取幾人?
(Ⅲ)在(Ⅱ)的條件下,若從這人中隨機(jī)抽取人參加交通安全宣傳活動(dòng),求第組至少有人被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,是異面直線,給出下列結(jié)論:
①一定存在平面,使直線平面,直線平面;
②一定存在平面,使直線平面,直線平面;
③一定存在無數(shù)個(gè)平面,使直線與平面交于一個(gè)定點(diǎn),且直線平面.
則所有正確結(jié)論的序號(hào)為( )
A. ①② B. ② C. ②③ D. ③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天氣預(yù)報(bào)說,在今后的三天中,每一天下雨的概率均為40%,現(xiàn)部門通過設(shè)計(jì)模擬實(shí)驗(yàn)的方法研究三天中恰有兩天下雨的概率:先利用計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),用1,2,3,4表示下雨,其余6個(gè)數(shù)字表示不下雨:產(chǎn)生了20組隨機(jī)數(shù):
907 | 966 | 191 | 925 | 271 | 932 | 812 | 458 | 569 | 683 |
431 | 257 | 393 | 027 | 556 | 488 | 730 | 113 | 537 | 989 |
則這三天中恰有兩天降雨的概率約為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)的最大值;
(2)令,其圖象上存在一點(diǎn),使此處切線的斜率,求實(shí)數(shù)的取值范圍;
(3)當(dāng), 時(shí),方程有唯一實(shí)數(shù)解,求正數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校早上8:00開始上課,假設(shè)該校學(xué)生小張與小王在早上7:30~7:50之間到校,且每人在該時(shí)間段的任何時(shí)刻到校是等可能的,則小張比小王至少晚5分鐘到校的概率是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com